Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, based on the three-term conjugate gradient method and the hybrid technique, we propose a hybrid three-term conjugate gradient projection method by incorporating the adaptive line search for solving large-scale nonlinear monotone equations with convex constraints. The search direction generated by the proposed method is close to the one yielded by the memoryless BFGS method, and has the sufficient descent property and the trust region property independent of line search technique. Under some mild conditions, we establish the global convergence of the proposed method. Our numerical experiments show the effectiveness and robustness of the proposed method in comparison with two existing algorithms in the literature. Moreover, we show applicability and encouraging efficiency of the proposed method by extending it to solve sparse signal restoration and image de-blurring problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mapping associated with variational inequality and is applications. SIAM J. Optim. 11(4), 962–973 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for 1-norm problems with applications to compressed sensing. Nonlinear Anal. 74 (11), 3570–3577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dirkse, S.P., Ferris, M.C.: MCPLIB: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5(4), 319–345 (1995)

    Article  Google Scholar 

  4. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley, New York (1996)

    Google Scholar 

  5. Yu, Z.S., Lin, J., Sun, J., Xiao, Y.H., Liu, L.Y., Li, Z.H.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, J., Duan, Y.R.: Two spectral gradient projection methods for constrained equations and their linear convergence rate. J. Inequal. Appl. 2015(1), 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, G.H., Niu, S.Z., Ma, J.H.: Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. J. Ind. Manag. Optim. 9(1), 117–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, L.: A modified PRP projection method for nonlinear equations with convex constraints. Int. J. Pure Appl. Math. 79(1), 87–96 (2012)

    Google Scholar 

  9. Xiao, Y.H., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405(1), 310–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, S.Y., Huang, Y.Y., Jiao, H.W.: Sufficient descent conjugate gradient methods for solving convex constrained nonlinear monotone equations. Abstr. Appl. Anal. 2014, 1–12 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Sun, M., Liu, J.: A modified Hestenes-Stiefel projection method for constrained nonlinear equations and its linear convergence rate. J. Appl. Math. Comput. 49(1-2), 145–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, Y.Y., Xiao, Y.H., Li, J.W.: A class of conjugate gradient methods for convex constrained monotone equations. Optimization 66 (12), 2309–2328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, J.K., Feng, Y.M.: A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithms 82, 245–262 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abubakar, A.B., Kumam, P.: A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer. Algorithms 81(1), 197–210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ibrahim, A.H., Kumam, P., Abubakar, A.B., Jirakitpuwapat, W., Abubakar, J.: A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing. Heliyon 6(3), e03466 (2020)

    Article  Google Scholar 

  16. Wang, S., Guan, H.B.: A scaled conjugate gradient method for solving monotone nonlinear equations with convex constraints. J. Appl. Math. 2013(1), 1–7 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Liu, J.K., Li, S.J.: Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. J. Ind. Manag. Optim. 13 (1), 283–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abubakar, A.B., Kumam, P., Mohammad, H., Awwal, A.M., Sitthithakerngkiet, K.: A modified Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with some applications. Mathematics 7 (8), 745 (2019)

    Article  Google Scholar 

  19. Abubakar, A.B., Kumam, P., Mohammad, H., Awwal, A.M.: An efficient conjugate gradient method for convex constrained monotone nonlinear equations with applications. Mathematics 7(9), 767 (2019)

    Article  Google Scholar 

  20. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp.355-369. Kluwer Academic (1998)

  21. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abubakar, A.B., Kumam, P., Mohammad, H.: A note on the spectral gradient projection method for nonlinear monotone equations with applications. Comput. Appl. Math. 39, 129 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Awwal, A.M., Wang, L., Kumam, P., Mohammad, H.: A two-step spectral gradient projection method for system of nonlinear monotone equations and image deblurring problems. Symmetry 12(6), 874 (2020)

    Article  Google Scholar 

  25. Mohammad, H., Abubakar, A.B.: A descent derivative-free algorithm for nonlinear monotone equations with convex constraints. RAIRO-oper Res. 54(2), 489–505 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, X.Y., Li, S.J., Kou, X.P.: A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints. Calcolo 53(2), 133–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao, P.T., He, C.J.: An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints. Calcolo 55(4), 53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: Theory. J. Optim. Theory Appl. 69, 177–182 (1991)

    Article  MATH  Google Scholar 

  30. Gao, P.T., He, C.J., Liu, Y.: An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl. Math. Comput. 359, 1–16 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (SSVM) algorithms, Part i: Criteria and sufficient conditions for scaling a class of algorithms. Manag. Sci. 20(5), 845–862 (1974)

    Article  MATH  Google Scholar 

  32. Awwal, A.M., Kumam, P., Mohammad, H., Watthayu, W., Abubakar, A.B.: A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing 1 regularized problem. Optimization. (2020). https://doi.org/10.1080/02331934.2020.1808647

  33. Jian, J.B., Han, L., Jiang, X.Z.: A hybrid conjugate gradient method with descent property for unconstrained optimization. Appl. Math. Model. 39(3-4), 1281–1290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, M., Liu, J.: New hybrid conjugate gradient projection method for the convex constrained equations. Calcolo 53, 399–411 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shanno, D.F.: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3, 244–256 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, M.: A modified Hestense-Stiefel conjugate gradient method close to the memoryless BFGS quasi-Newton method. Optim. Methods Softw. 33 (2), 336–353 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, M.: A three term polak-ribière-polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. J. Ind. Manag. Optim. 13(5), 1–16 (2017)

    MathSciNet  Google Scholar 

  39. Li, M.: A family of three-term nonlinear conjugate gradient methods close to the memoryless BFGS method. Optim. Lett. 12, 1911–1927 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Beale, E.M.L.: A derivation of conjugate gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization. Academic Press, London (1972)

  41. Nazareth, L.: A conjugate direction algorithm without line search. J. Optim. Theory Appl. 23(3), 373–387 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, L., Zhou, W.J., Li, D.H.: A descent modified polak-ribière-polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dai, Y.H., Yuan, Y.X.: Nonlinear Conjugate Gradient Methods. Shanghai Science and Technology Publisher, Shanghai (2000)

    Google Scholar 

  44. Hager, W.W., Zhang, H.C.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Yin, J.H., Jian, J.B., Jiang, X.Z.: A spectral gradient projection algorithm for convex constrained nonsmooth equations based on an adaptive line search. Math. Numer. Sin. (Chinese) 42(4), 457–471 (2020)

    MATH  Google Scholar 

  46. Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun, M., Tian, M.Y.: A class of derivative-free CG projection methods for nonsmooth equations with an application to the LASSO problem. Bull. Iran. Math. Soc. 46, 183–205 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cai, X.J., Gu, G.Y., He, B.S.: On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57(2), 339–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zarantonello, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory. Academic Press, New York (1971)

    MATH  Google Scholar 

  50. Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Meth. Oper. Res. 66(1), 33–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou, W.J., Li, D.H.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)

    MathSciNet  Google Scholar 

  52. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18(5), 583–599 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Dolan, E.D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1(4), 586–597 (2008)

    Article  Google Scholar 

  55. Pang, J.S.: Inexact Newton methods for the nonlinear complementary problem. Math. Program. 36(1), 54–71 (1986)

    Article  MATH  Google Scholar 

  56. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall (2008)

  57. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the three anonymous referees for their very professional comments and quite useful suggestions, which greatly helped us to improve the original version of this paper.

Funding

This work was supported by the National Natural Science Foundation of China (11771383), the Natural Science Foundation of Guangxi Province (2018GXNSFAA281099), the Research Project of Guangxi University for Nationalities (2018KJQD02), and the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi Province (2018KY0700) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Jian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Jian, J., Jiang, X. et al. A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer Algor 88, 389–418 (2021). https://doi.org/10.1007/s11075-020-01043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01043-z

Keywords

Mathematics subject classification (2010)

Navigation