Abstract
This paper considers different versions of block-column iterative (BCI) methods for solving nonnegative constrained linear least squares problems. We present the convergence analysis for a family of stationary BCI methods with nonnegativity constraints (BCI-NC), which is applicable to linear complementarity problems (LCP). We also consider the flagging idea for BCI methods, which allows saving computational work by skipping small updates. Also, we combine the BCI-NC algorithm and the flagging version of a nonstationary BCI method with nonnegativity constraints to derive a convergence analysis for the resulting method (BCI-NF). The performance of our algorithms is shown on ill-posed inverse problems taken from tomographic imaging. We compare the BCI-NF and BCI-NC algorithms with three recent algorithms: the inner-outer modulus method (Modulus-CG method), the modulus-based iterative method to Tikhonov regularization with nonnegativity constraint (Mod-TRN method), and nonnegative flexible CGLS (NN-FCGLS) method. Our algorithms are able to produce more stable results than the mentioned methods with competitive computational times.
Similar content being viewed by others
References
Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984)
Bai, Z.Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17(6), 917–933 (2010)
Bai, Z.Z., Buccini, A., Hayami, K., Reichel, L., Yin, J.F., Zheng, N.: Modulus-based iterative methods for constrained tikhonov regularization. J. Comput. Appl. Math. 319, 1–13 (2017)
Bai, Z.Z., Jin, C.H.: Column-decomposed relaxation methods for the overdetermined systems of linear equations. Int. J. Appl. Math. 13(1), 71–82 (2003)
Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J. Opt. 23(4), 2037–2060 (2013)
Bierlaire, M., Toint, P.L., Tuyttens, D.: On iterative algorithms for linear least squares problems with bound constraints. Linear Algebra Appl. 143, 111–143 (1991)
Björck, Å.: Numerical methods for least squares problems, vol. 51, SIAM (1996)
Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. BIT Numer. Math. 19(2), 145–163 (1979)
Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4), 444–466 (1981)
Censor, Y., Elfving, T.: Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem. SIAM J. Matrix Anal. Appl. 24 (1), 40–58 (2002)
Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal projection methods. SIAM J. Sci. Comput. 30(1), 473–504 (2008)
Censor, Y., Gordon, D., Gordon, R.: BICAV: a block-iterative parallel algorithm for sparse systems with pixel-related weighting. IEEE Trans. Med. Imaging 20(10), 1050–1060 (2001)
Censor, Y., Gordon, D., Gordon, R.: Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27(6), 777–808 (2001)
Censor, Y., Zenios, S.A.: Parallel optimization: theory, algorithms, and applications. Oxford University Press on Demand (1997)
Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari Istituto per le applicazioni del calcolo (1938)
Cottle, R.W., Pang, J.S., Stone, R.E.: The linear complementarity problem. SIAM (2009)
Dong, J.L., Gao, J., Ju, F., Shen, J.: Modulus methods for nonnegatively constrained image restoration. SIAM J. Imaging Sci. 9(3), 1226–1246 (2016)
Dong, J.L., Jiang, M.Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebr. Appl. 16 (2), 129–143 (2009)
Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math. 35(1), 1–12 (1980)
Elfving, T., Hansen, P.C., Nikazad, T.: Semiconvergence and relaxation parameters for projected SIRT algorithms. SIAM J. Sci. Comput. 34(4), A2000–A2017 (2012)
Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence properties of Kaczmarz’s method. Inverse Probl. 30(5), 055,007 (2014)
Elfving, T., Hansen, P.C., Nikazad, T.: Convergence analysis for column-action methods in image reconstruction. Numer. Algorithms 74(3), 905–924 (2017)
Elfving, T., Nikazad, T.: Properties of a class of block-iterative methods. Inverse Probl. 25(11), 115,011 (2009)
Elfving, T., Nikazad, T., Hansen, P.C.: Semi-convergence and relaxation parameters for a class of SIRT algorithms. Electron. Trans. Numer. Anal. 37, 321–336 (2010)
Escalante, R., Raydan, M.: Alternating projection methods. SIAM (2011)
Garduño, E., Herman, G.T., Davidi, R.: Reconstruction from a few projections by ℓ1-minimization of the Haar transform. Inverse Probl. 27(5), 055,006 (2011)
Gazzola, S., Hansen, P.C., Nagy, J.G.: IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems. Numerical Algorithm, pp. 1–39. https://doi.org/10.1007/s11075-018-0570-7 (2018)
Gazzola, S., Wiaux, Y.: Fast nonnegative least squares through flexible Krylov subspaces. SIAM J. Sci. Comput. 39(2), A655–A679 (2017)
Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 2(2), 205–224 (1965)
Haltmeier, M.: Convergence analysis of a block iterative version of the loping landweber–kaczmarz iteration. Nonlinear Anal. Theory Methods Appl. 71(12), e2912–e2919 (2009)
Hansen, P.C., Jørgensen, J.S.: AIR Tools II: algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 79(1), 107–137 (2018)
Herman, G.T.: Fundamentals of computerized tomography: image reconstruction from projections. Springer Science & Business Media (2009)
Herman, G.T., Davidi, R.: Image reconstruction from a small number of projections. Inverse Probl. 24(4), 045,011 (2008)
Jiang, M., Wang, G.: Convergence studies on iterative algorithms for image reconstruction. IEEE Trans. Med. Imaging 22(5), 569–579 (2003)
Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de l’ Académie Polonaise des Sciences et des Lettres 35, 355–357 (1937)
Klarbring, A.: Quadratic programs in frictionless contact problems. Int. J. Eng. Sci. 24(7), 1207–1217 (1986)
Nagy, J., Strakos, Z.: Enforcing nonnegativity in image reconstruction algorithms. Inverse Problems Estimation, and Imaging 4121, 182–190 (2000)
Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)
Nikazad, T., Abbasi, M.: A unified treatment of some perturbed fixed point iterative methods with an infinite pool of operators. Inverse Probl. 33(4), 044,002 (2017)
Nikazad, T., Abbasi, M., Elfving, T.: Error minimizing relaxation strategies in Landweber and Kaczmarz type iterations. J. Inverse Ill-Posed Probl. https://doi.org/10.1515/jiip-2015-0082 (2015)
Nikazad, T., Karimpour, M.: Controlling noise error in block iterative methods. Numerical Algorithms, pp. 1–19 (2016)
Watt, D.W.: Column-relaxed algebraic reconstruction algorithm for tomography with noisy data. Appl. Opt. 33(20), 4420–4427 (1994)
Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
Zheng, N., Hayami, K., Yin, J.F.: Modulus-type inner outer iteration methods for nonnegative constrained least squares problems. SIAM Journal on Matrix Analysis and Applications 37(3), 1250–1278 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nikazad, T., Karimpour, M. Column-oriented algebraic iterative methods for nonnegative constrained least squares problems. Numer Algor 86, 1265–1284 (2021). https://doi.org/10.1007/s11075-020-00932-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00932-7
Keywords
- Row and column-block methods
- Linear complementarity problems
- Flagging
- Constrained linear least squares problems
- Relaxation parameter