Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On constrained optimization with nonconvex regularization

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In many engineering applications, it is necessary to minimize smooth functions plus penalty (or regularization) terms that violate smoothness and convexity. Specific algorithms for this type of problems are available in recent literature. Here, a smooth reformulation is analyzed and equivalence with the original problem is proved both from the points of view of global and local optimization. Moreover, for the cases in which the objective function is much more expensive than the constraints, model-intensive algorithms, accompanied by their convergence and complexity theories, are introduced. Finally, numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martínez, M.J., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2008)

    Article  MathSciNet  Google Scholar 

  2. Andreani, R., Haeser, G., Martínez, M.J.: On sequential optimality conditions for smooth constrained optimization. Optimization 60, 627–641 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear programming, Athenas Scientific (1999)

  4. Bian, W., Chen, X.: From sparse solutions of systems of equations to sparse modeling of signals and image. SIAM Rev. 51, 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bian, W., Chen, X.: Linearly constrained non Lipschitz optimization for image restoration. SIAM J. Imaging Sci. 8, 2294–2322 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bian, W., Chen, X., Ye, Y.: Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization. Math. Program. 149, 301–327 (2015)

    Article  MathSciNet  Google Scholar 

  7. Birgin, E.G., Martínez, M.J.: Practical augmented Lagrangian methods for constrained optimization society for industrial and applied mathematics, Philadelphia (2014)

  8. Birgin E.G., Martínez, M.J.: Complexity and performance of an augmented Lagrangian algorithm, Optimization Methods and Software, to appear. https://doi.org/10.1080/10556788.2020.1746962

  9. Birgin, E.G., Gardenghi, J.L., Martínez, M.J., Santos, S.A.: On the use of third-order models with fourth-order regularization for unconstrained optimization, Optimization Letters, to appear. https://doi.org/10.1007/s11590-019-01395-z

  10. Birgin, E.G., Gardenghi, J.L., Martínez, M.J., Santos, S.A., Toint, P.L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using higher order regularized models. Math. Progr. 163, 359–368 (2017)

    Article  Google Scholar 

  11. Birgin, E.G., Martínez, M.J.: On regularization and active-set methods with complexity for constrained optimization. SIAM J. Optim. 28, 1367–1395 (2018)

    Article  MathSciNet  Google Scholar 

  12. Browne, S.: The risk and rewards of minimizing shortfall probability. J. Portf. Manag. 25, 76–85 (1999)

    Article  Google Scholar 

  13. Candes, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  14. Cartis, C., Gould, N.I.M., Toint, P.h.L.: Second-order optimality and beyond: characterization and evaluation complexity in convexly-constrained nonlinear optimization. Found. Comput. Math. 18, 1073–1107 (2018)

    Article  MathSciNet  Google Scholar 

  15. Chen, X., Guo, L., Lu, Z., Ye, J.: An augmented Lagrangian method for non-Lipschitz nonconvex programming. SIAM J. Numer. Anal. 55, 168–193 (2017)

    Article  MathSciNet  Google Scholar 

  16. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and a smoothing trust region Newton method for non-Lipschitz optimization. SIAM J. Optim. 23, 1528–1552 (2013)

    Article  MathSciNet  Google Scholar 

  17. Chen, X., Zhou, W.: Convergence of the reweighted L1 minimization algorithm for L2-Lp minimization. Comput. Optim. Appl. 59, 47–61 (2014)

    Article  MathSciNet  Google Scholar 

  18. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  19. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  20. Fang, J., Peng, H.: Nonconcave penalized likelihood with a diverging number of parameters. Ann. Stat. 32, 928–961 (2004)

    Article  MathSciNet  Google Scholar 

  21. Frank, L.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35, 109–135 (1993)

    Article  Google Scholar 

  22. Haeser, G., Liu, H., Ye, Y.: Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary, Mathematical Programming, to appear. https://doi.org/10.1007/s10107-018-1290-4

  23. Lai, M., Wang, J.: An unconstrained Lq minimization with 0 < q ≤ 1 for sparse solution of underdetermined linear systems. SIAM J. Optim. 21, 82–101 (2010)

    Article  Google Scholar 

  24. Liu, Y.F., Ma, S., Dai, Y.H., Zhang, S.: A smoothing SQP framework for a class of composite Lq minimization over polyhedron. Math. Program. 158, 467–500 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lu, Z.: Iterative reweighted minimization methods for Lp regularized unconstrained nonlinear programming. Math. Program. 147, 277–307 (2014)

    Article  MathSciNet  Google Scholar 

  26. Martínez, M.J.: On high-order model regularization for constrained optimization. SIAM J. Optim. 27, 2447–2458 (2017)

    Article  MathSciNet  Google Scholar 

  27. Moré, J.J., Garbow, B.S., Hillstrom, K. E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  28. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.K.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1, 2–25 (2008)

    Article  MathSciNet  Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical optimization. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  30. Vogel, C.R.: Computational methods for inverse problems, Society for industrial and applied mathematics, Philadelphia (2002)

  31. Zhang, C.H.: Nearly unbiased variable selection under minimax nonconcave penalty. Ann. Stat. 38, 894–942 (2010)

    Article  Google Scholar 

Download references

Funding

This work was supported by FAPESP (grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and CNPq (grants 438185/2018-8, 302538/2019-4, and 302682/2019-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Birgin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birgin, E.G., Martínez, J.M. & Ramos, A. On constrained optimization with nonconvex regularization. Numer Algor 86, 1165–1188 (2021). https://doi.org/10.1007/s11075-020-00928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00928-3

Keywords

Navigation