Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The split feasibility problem is to find a point x with the property that xC and AxQ, where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y, respectively, and A is a bounded linear operator from X to Y. The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed CQ algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed CQ algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, R.P., Regan, D.O, Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications. Springer, New York USA (2009)

    Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  3. Anh, P.K., Vinh, N.T., Dung, V.T.: A new self-adaptive CQ algorithm with an application to the lasso problem. J. Fixed Point Theory Appl. 20, 142 (2018)

    Article  MathSciNet  Google Scholar 

  4. Ansari, Q.H., Rehan, A.: Split feasibility and xed point problems. In: Ansari, Q.H. (ed.) Nonlinear Analysis Approximation Theorem Optimization Application, pp 281–322. Springer (2014)

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  7. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–84 (2005)

    Article  MathSciNet  Google Scholar 

  10. Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithm for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Dong, Q.L., Li, X.H., Kitkuan, D., Cho, Y.J., Kumam, P.: Some algorithms for classes of split feasibility problems involving paramonotone equilibria and convex optimization. J. Inequal. Appl. 2019, 77 (2019)

    Article  MathSciNet  Google Scholar 

  12. Dong, Q.L., Huang, J., Li, X.H., Cho, Y.J., Rassias, Th.M.: MiKM: Multi-step inertial ktrsnosel’skií-mann algorithm and its applications. J. Global Optim. 73, 801–824 (2019)

    Article  MathSciNet  Google Scholar 

  13. Dong, Q.L., Yao, Y., He, S.: Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in hilbert spaces. Optim. Lett. 8, 1031–1046 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, Th.M.: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12, 87–102 (2018)

    Article  MathSciNet  Google Scholar 

  15. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, Th.M.: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. 70, 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dong, Q.L., Cho, Y.J., Rassias, Th.M.: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, T.H.M. (ed.) Applications of Nonlinear Analysis, pp 175–191. Springer (2018)

  17. Dong, Q.L., Tang, Y.C., Cho, Y.J., Rassias, Th.M.: “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Global Optim. 71, 341–360 (2018)

    Article  MathSciNet  Google Scholar 

  18. Gibali, A., Mai, D.T., Vinh, N.T.: A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. J. Ind. Manag. Optim. 15, 963–984 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Jirakitpuwapat, W., Kumam, P., Cho, Y.J., Sitthithakerngkiet, K.: A general algorithm for the split common fixed point problem with its applications to signal processing. Mathematics 7(3), 226 (2019)

    Article  Google Scholar 

  20. Kesornprom, S., Pholasa, N., Cholamjiak, P.: On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem. Numer. Algor. 84, 997–1017 (2020)

    Article  MathSciNet  Google Scholar 

  21. Lopez, G., Martin, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problem, 28 (2012)

  22. Ma, Z., Wang, L., Cho, Y.J.: Some results for split equality equilibrium problems in Banach spaces. Symmetry, 11 (2019)

  23. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mapping. Set Valued Anal. 15, 67–79 (2007)

    Article  MathSciNet  Google Scholar 

  24. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  25. Qu, B., Liu, B.: The split feasibility problem and its solution algorithm, Math Problems in Engin (2018)

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  27. Sahu, D.R.: Application of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12(1), 187–204 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Sahu, D.R., Ansari, Q.H., Yao, J.C.: Convergence of inexact Mann iterations generated by nearly nonexpansive sequences and applications. Numer. Funct. Anal. Optim. 37, 1312–1338 (2016)

    Article  MathSciNet  Google Scholar 

  29. Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities, Optim. Lett. https://doi.org/10.1007/s11590-020-01603-1 (2020)

  30. Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Indust. Manag. Optim. 14, 1595–1615 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Suantai, S., Pholasa, N., Cholamjiak, P.: Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems. Racsam Rev. R. Acad. A. 113, 1081–1099 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Suantai, S., Kesornprom, S., Cholamjiak, P.: A new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensing. Mathematics 7, 789 (2019)

    Article  Google Scholar 

  33. Tan, K.K., Xu, H.K.: Approximating fixed point of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–308 (1993)

    Article  MathSciNet  Google Scholar 

  34. Tibshirani, R.: Regression shrinkage and selection via the Lasso, J.R. Stat. Soc. Ser B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Vinh, N., Cholamjiak, P., Suantai, S.: A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci Soc (2018)

  36. Wang, F.: Polyak‘s gradient method for split feasibility problem constrained by level sets, Numer. Algorithms 77, 925–938 (2018)

    Article  MathSciNet  Google Scholar 

  37. Witthayarat, U., Cho, Y.J., Cholamjiak, P.: On solving proximal split feasibility problems and applications. Ann. Funct. Anal. 9, 111–122 (2018)

    Article  MathSciNet  Google Scholar 

  38. Yang, Q.: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166–179 (2005)

    Article  MathSciNet  Google Scholar 

  39. Xu, H.K.: Iterative methods for solving the split feasibility in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    Article  Google Scholar 

  40. Zhao, J., Liang, Y., Liu, Y., Cho, Y.J.: Split equilibrium problems, variational inequality problems and fixed point problems for multi-valued mappings in Hilbert spaces. Appl. Comput. Math. 17, 271–283 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The third author was supported by Open Fund of Tianjin Key Lab for Advanced Signal Processing (No. 2016ASP-TJ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q.L. Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D., Cho, Y., Dong, Q. et al. Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer Algor 87, 1075–1095 (2021). https://doi.org/10.1007/s11075-020-00999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00999-2

Keywords

Mathematics Subject Classification (2010)

Navigation