Abstract
The Dirichlet-Neumann and Neumann-Neumann waveform relaxation methods are nonoverlapping spatial domain decomposition methods to solve evolution problems, while the parareal algorithm is in time parallel fashion. Based on the combinations of these space and time parallel strategies, we present and analyze two parareal algorithms based on the Dirichlet-Neumann and the Neumann-Neumann waveform relaxation method for the heat equation by choosing Dirichlet-Neumann/Neumann-Neumann waveform relaxation as two new kinds of fine propagators instead of the classical fine propagator. Both new proposed algorithms could be viewed as a space-time parallel algorithm, which increases the parallelism both in space and in time. We derive for the heat equation the convergence results for both algorithms in one spatial dimension. We also illustrate our theoretical results with numerical experiments finally.
Similar content being viewed by others
References
Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time molecular-dynamics simulations. Phys. Rev. E 66, 057701 (2002)
Bal, G.: Parallelization in time of (stochastic) ordinary differential equations. Math. Meth. Anal Num. (submitted) (2003)
Engblom, S.: Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale Model. Simul. 8(1), 46–68 (2009)
Fischer, P.F., Hecht, F., Maday, Y.: A parareal in time semi-implicit approximation of the Navier-Stokes equations. In: Kornhuber, R. et al. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, pp 433–440. Springer, Berlin (2005)
Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition Methods, pp 69–113. Springer (2015)
Gander, M.J., Hairer, E.: Nonlinear convergence analysis for the parareal algorithm. Lect. Notes Comput. Sci. Eng. 60, 45–56 (2008)
Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)
Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)
Gander, M.J., Jiang, Y.L., Li, R.J.: Parareal Schwarz waveform relaxation methods. In: Domain Decomposition Methods in Science and Engineering XX, pp 451–458. Springer (2013)
Gander, M.J., Jiang, Y.L., Song, B.: A superlinear convergence estimate for the parareal Schwarz waveform relaxation algorithm. SIAM J. Sci. Comput. 41 (2), A1148–A1169 (2019)
Gander, M.J., Jiang, Y.L., Song, B., Zhang, H.: Analysis of two parareal algorithms for time-periodic problems. SIAM J. Sci. Comput. 35(5), A2393–A2415 (2013)
Gander, M.J., Kwok, F., Mandal, B.C.: Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems. Electron. Trans. Numer. Anal. 45, 424–456 (2016)
Gander, M.J., Kwok, F., Mandal, B.C.: Dirichlet-Neumann and Neumann-Neumann waveform relaxation for the wave equation. In: Domain Decomposition Methods in Science and Engineering XXII, pp 501–509. Springer (2016)
Gander, M.J., Stuart, A.M.: Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)
Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)
Giladi, E., Keller, H.B.: Space-time domain decomposition for parabolic problems. Numer. Math. 93(2), 279–313 (2002)
Jiang, Y.L.: A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations: the continuous-time and discrete-time cases. IEEE Trans. Circ. Syst. I: Regular Papers 51(9), 1770–1780 (2004)
Jiang, Y.L.: Waveform Relaxation Methods. Scientific Press, Beijing (2010)
Jiang, Y.L., Ding, X.L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)
Jiang, Y.L., Song, B.: Coupling parareal and Dirichlet-Neumann/Neumann-Neumann waveform relaxation methods for the heat equation. In: International Conference on Domain Decomposition Methods, pp 405–413. Springer (2017)
Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 1(3), 131–145 (1982)
Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 332(7), 661–668 (2001)
Liu, J., Jiang, Y.L.: Waveform relaxation for reaction-diffusion equations. J. Comput. Appl. Mathe. 235(17), 5040–5055 (2011)
Liu, J., Jiang, Y.L.: A parareal algorithm based on waveform relaxation. Math. Comput. Simul. 82(11), 2167–2181 (2012)
Liu, J., Jiang, Y.L.: A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations. J. Comput. Appl. Math. 236(17), 4245–4263 (2012)
Lubich, C., Ostermann, A.: Multi-grid dynamic iteration for parabolic equations. BIT Numer. Math. 27(2), 216–234 (1987)
Maday, Y., Salomon, J., Turinici, G.: Monotonic parareal control for quantum systems. SIAM J. Numer. Anal. 45(6), 2468–2482 (2007)
Maday, Y., Turinici, G.: A parareal in time procedure for the control of partial differential equations. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 335(4), 387–392 (2002)
Maday, Y., Turinici, G.: Parallel in time algorithms for quantum control: parareal time discretization scheme. Int. J. Quant. Chem. 93(3), 223–228 (2003)
Maday, Y., Turinici, G.: The parareal in time iterative solver: a further direction to parallel implementation. Lect. Notes Comput. Sci. Eng. 40, 441–448 (2005)
Song, B., Jiang, Y.L.: Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems. Numer. Algor. 67(3), 599–622 (2014)
Song, B., Jiang, Y.L.: A new parareal waveform relaxation algorithm for time-periodic problems. Int. J. Comput. Math. 92(2), 377–393 (2015)
Staff, G.: Convergence and Stability of the Parareal Algorithm. Master’s thesis. Norwegian University of Science and Technology, Norway (2003)
Staff, G.A., Rønquist, E.M.: Stability of the parareal algorithm. Domain Decomposition Methods in Science and Engineering 40, 449–456 (2005)
Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow. Int. J. Numer. Methods Fluids 45 (10), 1123–1136 (2004)
Vandewalle, S., Van de Velde, E.: Space-time concurrent multigrid waveform relaxation. Annals Numer. Math 1, 347–363 (1994)
Wu, S.L.: Toward parallel coarse grid correction for the parareal algorithm. SIAM J. Sci. Comput. 40(3), A1446–A1472 (2018)
Wu, S.L., Al-Khaleel, M.: Convergence analysis of the Neumann-Neumann waveform relaxation method for time-fractional RC circuits. Simul. Model. Pract. Theory 64, 43–56 (2016)
Wu, S.L., Zhou, T.: Fast parareal iterations for fractional diffusion equations. J. Comput. Phys. 329, 210–226 (2017)
Acknowledgments
We would like to thank the anonymous referee for his valuable comments.
Funding
This work was supported by the Natural Science Foundation of China (NSFC) under grants 11801449, 11871393 and 11871400; the key project of the International Science and Technology Cooperation Program of Shaanxi Research & Development Plan under grant 2019KWZ-08; the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ-617) and the Fundamental Research Funds for the Central Universities under grant G2018KY0306.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Song, B., Jiang, YL. & Wang, X. Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation. Numer Algor 86, 1685–1703 (2021). https://doi.org/10.1007/s11075-020-00949-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00949-y