Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Energy-preserving algorithm for gyrocenter dynamics of charged particles

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Gyrocenter dynamics of charged particles plays a fundamental and important role in plasma physics, which requires accuracy and conservation in a long-time simulation. Variational symplectic algorithms and canonicalized symplectic algorithms have been developed for gyrocenter dynamics. However, variational symplectic methods are always unstable, and canonicalized symplectic methods need coordinates transformation case by case, which is usually difficult to find. Based on the fact that the Hamiltonian function describing the energy of the system is invariant, we develop energy-preserving algorithms for gyrocenter dynamics systematically using the discrete gradient method. The given integrators have significant advantages in preserving energy and efficiency over long-time simulations, compared with non-symplectic methods and canonicalized symplectic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Littlejohn, R.G.: Variational principles of guiding centre motion. J. Plasma Phys. 29, 111–125 (1983)

    Article  Google Scholar 

  2. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669 (1983)

    Article  Google Scholar 

  3. Feng, K.: .. In: On Difference Schemes and Symplectic Geometry, Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations. Science Press, Beijing (1985)

  4. Feng, K, Qin, M: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Qin, H., Guan, X.: Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Phys. Rev. Lett. 100, 035006 (2008)

    Article  Google Scholar 

  7. Qin, H., Guan, X., Tang, W.M.: Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry. Phys. Plasmas 16, 042510 (2009)

    Article  Google Scholar 

  8. Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W.M.: Why is Boris algorithm so good?. Phys. Plasmas 20, 084503 (2013)

    Article  Google Scholar 

  9. Zhang, R., Liu, J., Tang, Y., Qin, H., Xiao, J., Zhu, B.: Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields. Phys. Plasmas 21, 032504 (2014)

    Article  Google Scholar 

  10. Zhang, R., Liu, J., Qin, H., Wang, Y., He, Y., Sun, Y.: Volume-preserving algorithm for secular relativistic dynamics of charged particles. Phys. Plasmas 22, 044501 (2015)

    Article  Google Scholar 

  11. Zhang, R., Qin, H., Tang, Y., He, J.L.Y., Xiao, J.: Explicit symplectic algorithms based on generating functions for charged particle dynamics. Phys. Rev. E. 94, 013205 (2016)

    Article  Google Scholar 

  12. He, Y., Sun, Y., Liu, J., Qin, H.: Volume-preserving algorithms for charged particle dynamics,. J. Comput. Phys. 281, 135 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y., Zhou, Z., Sun, Y., Liu, J., Qin, H.: Explicit K-symplectic algorithms for charged particle dynamics. Phys. Lett. A 381, 568–573 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Squire, J., Qin, H., Tang, W.M.: Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme. Phys. Plasmas 19, 084501 (2012)

    Article  Google Scholar 

  15. Kraus, M.: arXiv:1307.5665 (2013)

  16. Burby, J., Ellison, C., Qin, H.: arXiv:1405.1698 (2014)

  17. Tao, M.: Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. J. Comput. Phys. 327, 245–251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hairer, E., Lubich, C.: Symmetric multistep methods for charged particle dynamics. SMAI J. Comput. Math. 3, 205–218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. LaBudde, R.A., Greenspan, D.: Discrete mechanics—a general treatment. J. Comput. Phys. 15, 134–167 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. McLachlan, R.I., Quispel, G., Robidoux, N.: Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. McLachlan, R.I., Quispel, G., Robidoux, N.: Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 357, 1021 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quispel, G., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Industrial Appl. Math. 5, 73 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: a Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  26. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D., ONeale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J. Comput. Phys. 76, 85–102 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of Hamiltonian PDEs. AIP Conference Proc. 1648, 020002 (2015)

    Article  MATH  Google Scholar 

  30. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Line integral formulation of energy and QUadratic invariants preserving (EQUIP) methods for Hamiltonian systems. AIP Conference Proc. 1738, 100002 (2016)

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (NSFC-11505186, 11575185, 11575186, 11771438, 11775222), ITER-China Program (2015GB111003, 2017YFE0301700), the Fundamental Research Funds for the Central Universities (Grant No. 2017RC033, FRF-TP-16-066A1, WK2150110008), Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, J., Qin, H. et al. Energy-preserving algorithm for gyrocenter dynamics of charged particles. Numer Algor 81, 1521–1530 (2019). https://doi.org/10.1007/s11075-019-00739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00739-1

Keywords

Navigation