Abstract
Gyrocenter dynamics of charged particles plays a fundamental and important role in plasma physics, which requires accuracy and conservation in a long-time simulation. Variational symplectic algorithms and canonicalized symplectic algorithms have been developed for gyrocenter dynamics. However, variational symplectic methods are always unstable, and canonicalized symplectic methods need coordinates transformation case by case, which is usually difficult to find. Based on the fact that the Hamiltonian function describing the energy of the system is invariant, we develop energy-preserving algorithms for gyrocenter dynamics systematically using the discrete gradient method. The given integrators have significant advantages in preserving energy and efficiency over long-time simulations, compared with non-symplectic methods and canonicalized symplectic algorithms.
Similar content being viewed by others
References
Littlejohn, R.G.: Variational principles of guiding centre motion. J. Plasma Phys. 29, 111–125 (1983)
Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669 (1983)
Feng, K.: .. In: On Difference Schemes and Symplectic Geometry, Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations. Science Press, Beijing (1985)
Feng, K, Qin, M: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)
Qin, H., Guan, X.: Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Phys. Rev. Lett. 100, 035006 (2008)
Qin, H., Guan, X., Tang, W.M.: Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry. Phys. Plasmas 16, 042510 (2009)
Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W.M.: Why is Boris algorithm so good?. Phys. Plasmas 20, 084503 (2013)
Zhang, R., Liu, J., Tang, Y., Qin, H., Xiao, J., Zhu, B.: Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields. Phys. Plasmas 21, 032504 (2014)
Zhang, R., Liu, J., Qin, H., Wang, Y., He, Y., Sun, Y.: Volume-preserving algorithm for secular relativistic dynamics of charged particles. Phys. Plasmas 22, 044501 (2015)
Zhang, R., Qin, H., Tang, Y., He, J.L.Y., Xiao, J.: Explicit symplectic algorithms based on generating functions for charged particle dynamics. Phys. Rev. E. 94, 013205 (2016)
He, Y., Sun, Y., Liu, J., Qin, H.: Volume-preserving algorithms for charged particle dynamics,. J. Comput. Phys. 281, 135 (2015)
He, Y., Zhou, Z., Sun, Y., Liu, J., Qin, H.: Explicit K-symplectic algorithms for charged particle dynamics. Phys. Lett. A 381, 568–573 (2017)
Squire, J., Qin, H., Tang, W.M.: Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme. Phys. Plasmas 19, 084501 (2012)
Kraus, M.: arXiv:1307.5665 (2013)
Burby, J., Ellison, C., Qin, H.: arXiv:1405.1698 (2014)
Tao, M.: Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. J. Comput. Phys. 327, 245–251 (2016)
Hairer, E., Lubich, C.: Symmetric multistep methods for charged particle dynamics. SMAI J. Comput. Math. 3, 205–218 (2017)
LaBudde, R.A., Greenspan, D.: Discrete mechanics—a general treatment. J. Comput. Phys. 15, 134–167 (1974)
Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449 (1996)
McLachlan, R.I., Quispel, G., Robidoux, N.: Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399 (1998)
McLachlan, R.I., Quispel, G., Robidoux, N.: Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 357, 1021 (1999)
Quispel, G., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41, 045206 (2008)
Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Industrial Appl. Math. 5, 73 (2010)
Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: a Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, Boca Raton (2010)
Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318 (2011)
Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D., ONeale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770 (2012)
Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J. Comput. Phys. 76, 85–102 (1988)
Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of Hamiltonian PDEs. AIP Conference Proc. 1648, 020002 (2015)
Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Line integral formulation of energy and QUadratic invariants preserving (EQUIP) methods for Hamiltonian systems. AIP Conference Proc. 1738, 100002 (2016)
Funding
This research is supported by the National Natural Science Foundation of China (NSFC-11505186, 11575185, 11575186, 11771438, 11775222), ITER-China Program (2015GB111003, 2017YFE0301700), the Fundamental Research Funds for the Central Universities (Grant No. 2017RC033, FRF-TP-16-066A1, WK2150110008), Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, R., Liu, J., Qin, H. et al. Energy-preserving algorithm for gyrocenter dynamics of charged particles. Numer Algor 81, 1521–1530 (2019). https://doi.org/10.1007/s11075-019-00739-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00739-1