Abstract
Speckle noise contamination is a common issue in ultrasound imaging system. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized for speckle noise removal. However, TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant. In this paper, we propose a new model to overcome this deficiency. In this model, the regularization term is represented by a combination of total variation and high-order total variation, while the data fidelity term is depicted by a generalized Kullback-Leibler divergence. The proposed model can be efficiently solved by alternating direction method with multipliers (ADMM). Compared with some state-of-the-art methods, the proposed method achieves higher quality in terms of the peak signal to noise ratio (PSNR) and the structural similarity index (SSIM). Numerical experiments demonstrate that our method can remove speckle noise efficiently while suppress staircase effects on both synthetic images and real ultrasound images.
Similar content being viewed by others
References
Abd-Elmoniem, K.Z., Youssef, A.-B.M., Kadah, Y.M.: Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans. Biomed. Eng. 49, 997–1014 (2002)
Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with poisson data: from cells to galaxies. Inverse Probl. 25, 123006 (2009)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)
Caiszar, I.: Why least squares and maximum entropy? an axiomatic approach to inference for linear inverse problems. Ann. Stat. 8, 2032–2066 (1991)
Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)
Chen, Y., Huang, T.-Z., Deng, L.-J., Zhao, X.-L., Wang, M.: Group sparsity based regularization model for remote sensing image stripe noise removal. Neurocomputing. doi:10.1016/j.neucom.2017.05.018 10.1016/j.neucom.2017.05.018, http://www.sciencedirect.com/science/article/pii/S0925231217308287 (2017)
Chen, Y., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., Huang, J.: Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint. Remote Sens. 9(559). doi:10.3390/rs9060559 (2017)
Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18, 2221–2229 (2009)
Deledalle, C.-A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18, 2661–2672 (2009)
Devi, P.N., Asokan, R.: An improved adaptive wavelet shrinkage for ultrasound despeckling. Sadhana 39, 971–988 (2014)
Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
Feng, W., Lei, H., Gao, Y.: Speckle reduction via higher order total variation approach. IEEE Trans. Image Process. 23, 1831–1843 (2014)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)
Hacini, M., Hachouf, F., Djemal, K.: A new speckle filtering method for ultrasound images based on a weighted multiplicative total variation. Signal Process. 103, 214–229 (2014)
Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring images: matrices, spectra, and filtering. SIAM (2006)
He, B., Liao, L.-Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)
He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optimiz. 22, 313–340 (2012)
He, B., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998)
Huang, J., Yang, X.: Fast reduction of speckle noise in real ultrasound images. Signal Process. 93, 684–694 (2013)
Huang, Y.-M., Ng, M.K., Wen, Y.-W.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009)
Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Deng, L.-J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)
Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39, 62–74 (2011)
Khare, A., Khare, M., Jeong, Y., Kim, H., Jeon, M.: Despeckling of medical ultrasound images using Daubechies complex wavelet transform. Signal Process. 90, 428–439 (2010)
Krissian, K., Kikinis, R., Westin, C.-F., Vosburgh, K.: Speckle-constrained filtering of ultrasound images. CVPR. 2, 547–552 (2005)
Krissian, K., Vosburgh, K., Kikinis, R., Westin, C.-F.: Anisotropic Diffusion of Ultrasound Constrained by Speckle Noise Model. Laboratory of Mathematics in Imaging, Harvard Medical School, Technical Report (2004)
Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech. 35, 373–383 (1987)
Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21, 983–995 (2012)
Li, F., Ng, M.K., Shen, C.: Multiplicative noise removal with spatially varying regularization parameters. SIAM J. Imaging Sci. 3, 1–20 (2010)
Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image. R. 18, 322–330 (2007)
Liu, J., Huang, T.-Z., Selesnick, I.W., Lv, X.-G., Chen, P.-Y.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232–246 (2015)
Lopes, A., Touzi, R., Nezry, E.: Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990)
Loupas, A.: Digital image processing for noise reduction in medical ultrasonics. PhD thesis, University of Edinburgh, UK (1988)
Loupas, T., McDicken, W., Allan, P.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989)
Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)
Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vision. 66, 5–18 (2006)
Marks, D.L., Ralston, T.S., Boppart, S.A.: Speckle reduction by I-divergence regularization in optical coherence tomography. JOSA A. 22, 2366–2371 (2005)
Mei, J.-J., Dong, Y.-Q., Huang, T.-Z., Yin, W.-T.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. doi:10.1007/s10915-017-0460-5 (2017)
Michailovich, O.V., Tannenbaum, A.: Despeckling of medical ultrasound images. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 53, 64–78 (2006)
Ng, M.K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)
Papafitsoros, K., Schönlieb, C.-B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48, 308–338 (2014)
Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50, 606–616 (2012)
Resmerita, E., Engl, H.W., Iusem, A.N.: The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Probl. 23, 2575 (2007)
Rudin, L., Lions, P.-L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp 103–119 (2003)
Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. Approximation 12, 360–386 (2008)
Shi, B., Huang, L., Pang, Z.-F.: Fast algorithm for multiplicative noise removal. J. Vis. Commun. Image R. 23, 126–133 (2012)
Slabaugh, G., Unal, G., Fang, T., Wels, M.: Ultrasound-specific segmentation via decorrelation and statistical region-based active contours. CVPR. 1, 45–53 (2006)
Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36, 168–184 (2010)
Tur, M., Chin, K.C., Goodman, J.W.: When is speckle noise multiplicative?. Appl. Opt. 21, 1157–1159 (1982)
Tuthill, T., Sperry, R., Parker, K.: Deviations from Rayleigh statistics in ultrasonic speckle. Ultrason. Imaging 10, 81–89 (1988)
Wang, S., Guo, W., Huang, T.-Z., Raskutti, G.: Image inpainting using reproducing kernel Hilbert space and Heaviside function variations. J. Comput. Appl. Math. 311, 551–564 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)
You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9, 1723–1730 (2000)
Yu, J., Tan, J., Wang, Y.: Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method. Pattern Recogn. 43, 3083–3092 (2010)
Zhao, X.-L., Wang, F., Huang, T.-Z., Ng, M.K., Plemmons, R.J.: Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51, 4045–4058 (2013)
Zhao, X.-L., Wang, F., Ng, M.K.: A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 7, 456–475 (2014)
Acknowledgements
The authors would like to thank Meriem Hacini (Laboratoire d’ Automatique et de Robotique, Algeria) for providing the real ultrasound images. This research is supported by 973 Program (2013CB329404), NSFC (61370147, 11401081, 61402082).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, S., Huang, TZ., Zhao, XL. et al. Speckle noise removal in ultrasound images by first- and second-order total variation. Numer Algor 78, 513–533 (2018). https://doi.org/10.1007/s11075-017-0386-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0386-x