Abstract
Recently, Liao introduced a new method for finding analytical solutions to nonlinear differential equations. In this paper, we extend this idea to nonlinear systems. We study the system of nonlinear differential equations that governs nonlinear convective heat transfer at a porous flat plate and find functions that approximate the solutions by extending Liao’s Method of Directly Defining the Inverse Mapping (MDDiM).
Similar content being viewed by others
References
Vajravelu, K., Cannon, J.R., Leto, J., Semmoum, R., Nathan, S., Draper, M., Hammock, D.: Nonlinear convection at a porous flat plate with application to heat transfer from a dike. J. Math. Anal. Appl. 277, 609–623 (2003)
Cheng, P.: The influence of lateral mass flux on free convection boundary layers in saturated porous medium. Int. J. Heat Mass Transfer 20, 201–206 (1977)
Liao, S., Zhao, Y.: On the method of directly defining inverse mapping for nonlinear differential equations. Numer. Algoritm. doi:10.1007/s11075-015-0077-4
Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)
Liao, S.J.: Homotopy Analysis method in nonlinear differential equations. Springer & Higher Education Press, Heidelberg (2012)
Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078– 4089 (2009)
Vajravelu, K., Van Gorder, R.A.: Nonlinear flow phenomena and homotopy analysis: fluid flow and heat transfer. Springer, Heidelberg (2013)
Van Gorder, R.A.: Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 17, 1233–1240 (2012)
Baxter, M., Van Gorder, R.A., Vajravelu, K.: On the choice of auxiliary linear operator in the optimal homotopy analysis of the Cahn-Hilliard initial value problem. Numer. Algoritm. 66, 269–298 (2014)
Baxter, M., Van Gorder, R.A.: Exact and analytical solutions for a nonlinear sigma model. Math. Methods Appl. Sci. 37, 1642–1651 (2014)
Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 13, 539–546 (2008)
Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2315–2332 (2010)
Baxter, M., Van Gorder, R.A., Vajravelu, K.: Optimal analytic method for the nonlinear Hasegawa-Mima equation. Eur. Phys. J. Plus 129, 98 (2014)
Van Gorder, R.A.: Stability of the auxiliary linear operator and the convergence control parameter in the homotopy analysis method. Advances in the homotopy analysis method. In: Liao, S.-J. (ed.), pp. 123–180. World Scientific (2014)
Mallory, K., Van Gorder, R.A.: Optimal homotopy analysis and control of error for solutions to the non-local Whitham equation. Numer. Algoritm. 66, 843–863 (2014)
Van Gorder, R.A.: Analytical method for the construction of solutions to the föppl-von kármán equations governing deflections of a thin flat plate. Int. J. Non-linear Mech. 47, 1–6 (2012)
Acknowledgements
The authors thank Professor Shijun Liao for the constructive comments (on the first draft of the paper) which led to definite improvement in the paper. The authors thank the reviewers for constructive comments that led to definite improvement in the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baxter, M., Dewasurendra, M. & Vajravelu, K. A method of directly defining the inverse mapping for solutions of coupled systems of nonlinear differential equations. Numer Algor 77, 1199–1211 (2018). https://doi.org/10.1007/s11075-017-0359-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0359-0