Abstract
Based on the variant of the deteriorated positive-definite and skew-Hermitian splitting (VDPSS) preconditioner developed by Zhang and Gu (BIT Numer. Math. 56:587–604, 2016), a generalized VDPSS (GVDPSS) preconditioner is established in this paper by replacing the parameter α in (2,2)-block of the VDPSS preconditioner by another parameter β. This preconditioner can also be viewed as a generalized form of the VDPSS preconditioner and the new relaxed HSS (NRHSS) preconditioner which has been exhibited by Salkuyeh and Masoudi (Numer. Algorithms, 2016). The convergence properties of the GVDPSS iteration method are derived. Meanwhile, the distribution of eigenvalues and the forms of the eigenvectors of the preconditioned matrix are analyzed in detail. We also study the upper bounds on the degree of the minimum polynomial of the preconditioned matrix. Numerical experiments are implemented to illustrate the effectiveness of the GVDPSS preconditioner and verify that the GVDPSS preconditioned generalized minimal residual method is superior to the DPSS, relaxed DPSS, SIMPLE-like, NRHSS, and VDPSS preconditioned ones for solving saddle point problems in terms of the iterations and computational times.
Similar content being viewed by others
References
Bai, Z.-Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems. Appl. Math. Comput. 109, 273–285 (2000)
Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comp. 75, 791–815 (2006)
Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl. 16, 447–479 (2009)
Bai, Z.-Z.: Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J. Comput. Appl. Math. 237, 295–306 (2013)
Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl Math. 283, 71–78 (2015)
Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)
Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2005)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl. 428, 413–440 (2008)
Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)
Bai, Z.-Z., Li, G.-Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. Anal. 23, 561–580 (2003)
Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 31, 410–433 (2009)
Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102, 1–38 (2005)
Bai, Z.-Z., Wang, Z.-Q.: Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. J. Comput. Appl Math. 187, 202–226 (2006)
Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)
Bai, Z.-Z., Yin, J.-F., Sum, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539–552 (2006)
Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer Anal. 34, 1072–1092 (1997)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York and London (1991)
Cao, Y., Dong, J.-L., Wang, Y.-M.: A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation. J. Comput. Appl. Math. 273, 41–60 (2015)
Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl Math. 272, 239–250 (2014)
Cao, Y., Li, S., Yao, L.-Q.: A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems. Appl. Math Lett. 49, 20–27 (2015)
Cao, Y., Ren, Z.-R., Shi, Q.: A simplified, HSS preconditioner for generalized saddle point problems. BIT Numer. Math. 56, 423–439 (2016)
Chen, C.-R., Ma, C.-F.: A generalized shift-splitting preconditioner for saddle point problems. Appl. Math. Lett. 43, 49–55 (2015)
Chen, C.-R., Ma, C.-F.: A generalized shift-splitting preconditioner for singular saddle point problems. Appl. Math. Comput. 269, 947–955 (2015)
Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J. Sci Comput. 27, 1555–1572 (2006)
Elman, H.C.: Preconditioners for saddle point problems arising in computational fluid dynamics. Appl. Numer. Math. 43, 75–89 (2002)
Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)
Fan, H.-T., Zhu, X.-Y.: A generalized relaxed positive-definite and skew-Hermitian splitting preconditioner for non-Hermitian saddle point problems. Appl. Math. Comput. 258, 36–48 (2015)
Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT Numer. Math. 41, 71–85 (2001)
Guo, P., Li, C.-X., Wu, S.-L.: A modified SOR-like method for the augmented systems. J. Comput. Appl. Math. 274, 58–69 (2015)
Li, C., Vuik, C.: Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow. Numer Linear Algebra Appl. 11, 511–523 (2004)
Liang, Z.-Z., Zhang, G.-F.: PU-STS method for non-Hermitian saddle-point problems. Appl. Math. Lett. 46, 1–6 (2015)
Liang, Z.-Z., Zhang, G.-F.: SIMPLE-like preconditioners for saddle point problems from the steady Navier-Stokes equations. J. Comput. Appl. Math. 302, 211–223 (2016)
Pan, J.-Y., Ng, M.K., Bai, Z.-Z.: New preconditioners for saddle point problems. Appl. Math. Comput. 172, 762–771 (2006)
Rozložník, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24, 368–391 (2002)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Salkuyeh, D.K., Masoudi, M.: A new relaxed HSS preconditioner for saddle point problems. Numer. Algorithms doi:10.1007/s11075-016-0171-2 (2016)
Simoncini, V.: Block triangular preconditioners for symmetric saddle-point problems. Appl. Numer. Math. 49, 63–80 (2004)
Sturler, E.D., Liesen, J.: Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems. SIAM J. Sci. Comput. 26, 1598–1619 (2005)
Yun, J.-H.: Variants of the Uzawa method for saddle point problem. Comput. Math. Appl. 65, 1037–1046 (2013)
Zhang, J.-L., Gu, C.-Q.: A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. BIT Numer. Math. 56, 587–604 (2016)
Zhang, J.-L., Gu, C.-Q., Zhang, K.: A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems. Appl. Math. Comput. 249, 468–479 (2014)
Zhou, S.-W., Yang, A.-L., Dou, Y., Wu, Y.-J.: The modified shift-splitting preconditioners for nonsymmetric saddle-point problems. Appl. Math. Lett. 59, 109–114 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported by the National Natural Science Foundation of China (No. 11171273) and sponsored by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX201628).
Rights and permissions
About this article
Cite this article
Huang, ZG., Wang, LG., Xu, Z. et al. A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. Numer Algor 75, 1161–1191 (2017). https://doi.org/10.1007/s11075-016-0236-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0236-2