Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A posteriori analysis: error estimation for the eighth order boundary value problems in reproducing Kernel space

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the previous work (Akram and Rehman Numer. Algor. 62 527–540 2013), Akram and Rehman presented the reproducing kernel method (RKM) for solving various eighth order boundary value problems. However, an effective error estimation for this method has not yet been discussed. This work is devoted to deal with this problem. Some other aspects of the RKM will be considered such as convergence analysis and numerical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akram, G., Rehman, H.U.: Solution of first order singularly perturbed initial value problem in reproducing kernel hilbert space. Eur. J. Sci. Res. 53(4), 516–523 (2011)

    Google Scholar 

  2. Akram, G., Siddiqi, S.S.: Nonic spline solutions of eighth order boundary value problems. Appl. Math. Comput. 182, 829–845 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akram, G., Rehman, H.U.: Numerical solution of eighth order boundary value problems in reproducing Kernel space. Numer. Algor. 62, 527–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, R.E.D., Cannon, S.M., Miao, S.: On coupled bending and torsional vibration of uniform beams. J. Sound Vib. 131, 457–464 (1989)

    Article  MATH  Google Scholar 

  5. Boutayeb, A., Twizell, E.H.: Finite-difference methods for the solution of eighth-order boundary-value problems. Int. J. Comput. Math. 48, 63–75 (1993)

    Article  MATH  Google Scholar 

  6. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  7. Cui, M.G., Geng, F.Z.: A computational method for solving one-dimensional variablecoefficient burgers equation. Appl. Math. Comput. 188, 1389–1401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geng, F.Z., Cui, M.G.: Solving singular two-point boundary value problem in reproducing Kernel space. J. Comput. Appl. Math. 205, 6–15 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golbabai, A., Javidi, M.: Application of homotopy perturbation method for solving eighthorder boundary value problems. Appl. Math. Comput. 191, 334–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, J.-H.: The variational iteration method for eighth-order initial-boundary value problems. Phys. Scr. 76, 680–682 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Inc, M., Evans, D.J.: An efficient approach to approximate solutions of eighth-order boundaryvalue problems. Int. J. Comput. Math. 81(6), 685–692 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C., Cui, M.: The exact solution for solving a class of nonlinear operator equations in the reproducing kernel space. Appl. Math. Comput. 143(23), 393–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X.Y., Wu, B.Y.: Error estimation for the reproducing kernel method to solve linear boundary value problems. Appl. Math. Comput. 243, 10–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, G.R., Wu, T.Y.: Differential quadrature solutions of eighth-order boundary-value differential equations. J. Comput. Appl. Math. 145, 223–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mestrovic, M.: The modified decomposition method for eighth-order boundary value problems. Appl. Math. Comput. 188, 1437–1444 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Noor, M.A., Mohyud-Din, S.T.: Variational iteration decomposition method for solving eighth-order boundary value problems. Differ. Equat. Nonlinear Mech. (2007)

  17. Porshokouhi, M.G., Ghanbari, B., Gholami, M., Rashidi, M.: Numerical solution of eighth order boundary value problems with variational iteration method. Gen. Math. Notes 2(1), 128–133 (2011)

    MATH  Google Scholar 

  18. Siddiqi, S.S., Akram, G.: Solution of eighth-order boundary value problems using the nonpolynomial spline technique. Int. J. Comput. Math. 84(3), 347–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Siddiqi, S.S., Twizell, E.H.: Spline solution of linear eighth-order boundary value problems. Comput. Methods Appl. Mech. Eng. 131, 309–325 (1996)

    Article  MATH  Google Scholar 

  20. Wazwaz, A.M.: The numerical solutions of special eighth-order boundary value problems by the modified decomposition method. Neural Parallel Sci. Comput. 8(2), 133–146 (2000)

    MathSciNet  MATH  Google Scholar 

  21. A Dezhbord, A., Lotfi, T., Mahdiani, K.: A new efficient method for cases of the singular integral equation of the first kind. J. Comput. Appl. Math. 296, 156–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, T., Rashidi, M. & Mahdiani, K. A posteriori analysis: error estimation for the eighth order boundary value problems in reproducing Kernel space. Numer Algor 73, 391–406 (2016). https://doi.org/10.1007/s11075-016-0100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0100-4

Keywords

Navigation