Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical solution and structural analysis of two-dimensional integral-algebraic equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The υ-smoothing property of a one-dimensional Volterra integral operator and some projectors (Liang and Brumer, SIAM J. Numer. Anal. 51, 2238–2259 (2013)) are extended for two-dimensional integral-algebraic equations (TIAEs). Using these concepts, we decompose the given general TIAEs into mixed systems of two-dimensional Volterra integral equations (TVIEs) consisting of second- and first-kind TVIEs. Numerical technique based on the Chebyshev polynomial collocation methods is presented for the solution of the mixed TVIE system. Global convergence results are established and the performance of the numerical scheme is illustrated by means of some test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell, J., Kufner, A.: On the two-dimensional Hardy operator in Lebesgue spaces with mixed norms. Analysis 15, 91–98 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spacesr. J. Comput. Appl. Math. 43, 55–80 (1992)

    Article  MathSciNet  Google Scholar 

  3. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press (2004)

  4. Bulatov, M. V., Lima, P. M.: Two-dimensional integral-algebraic systems: Analysis and computational methods. J. Comput. Appl. Math. 236, 132–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T. A.: Spectral Methods Fundamentals in Single Domains. Springer (2006)

  6. Demidenko, G. V., Uspenskii, S. V.: Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative. Taylor and Francis (2005)

  7. Hadizadeh, M., Ghoreishi, F., Pishbin, S.: Jacobi spectral solution for integral-algebraic equations of index-2. Appl. Numer. Math. 61, 131–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hesthaven, J. S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press (2007)

  9. Liang, H., Brunner, H.: Integral-algebraic equations: theory of collocation methods I. SIAM J. Numer. Anal. 51, 2238–2259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mitrinovic, D. S., Pecaric, J. E., A.M.Fink: Inequalities Involving Functions and Their Integrals and Derivatives. TSpringer Science and Business Media (1991)

  11. Pishbin, S., Ghoreishi, F., Hadizadeh, M.: The semi-explicit Volterra integral algebraic equations with weakly singular kernels: the numerical treatments. J. Comput. Appl. Math. 245, 121–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sawyer, E.T.: Weighted inequalities for the two-dimensional Hardy operator. Studia Math. 82, 1–16 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Xie, W.J., Lin, F.R.: A fast numerical solution method for two dimensional Fredholm integral equation of the second kind. Appl. Numer. Math. 59, 1709–1719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martinson, W. S., Barton, P. I.: Index and characteristic analysis of linear PDAE systems. SIAM. J. Sci. Comput. 24(3), 905–923 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeffrey, A.: Quasilinear Hyperbolic Systems and Waves. Pitman, London (1976)

    MATH  Google Scholar 

  16. Roe, P.L.: Characteristic-based schemes for the Euler equations. In: Annual Review of Fluid Mechanics, Vol. 18, Annual Reviews, Palo Alto, Ca, pp 337–365 (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pishbin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishbin, S. Numerical solution and structural analysis of two-dimensional integral-algebraic equations. Numer Algor 73, 305–322 (2016). https://doi.org/10.1007/s11075-016-0096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0096-9

Keywords

Mathematics Subject Classification (2010)

Navigation