Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Parametric AE-solution sets to the parametric linear systems with multiple right-hand sides and parametric matrix equation A(p)X = B(p)

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, the parametric matrix equation A(p)X = B(p) whose elements are linear functions of uncertain parameters varying within intervals are considered. In this matrix equation A(p) and B(p) are known m-by-m and m-by-n matrices respectively, and X is the m-by-n unknown matrix. We discuss the so-called AE-solution sets for such systems and give some analytical characterizations for the AE-solution sets and a sufficient condition under which these solution sets are bounded. We then propose a modification of Krawczyk operator for parametric systems which causes reduction of the computational complexity of obtaining an outer estimation for the parametric united solution set, considerably. Then we give a generalization of the Bauer-Skeel and the Hansen-Bliek-Rohn bounds for enclosing the parametric united solution set which also enables us to reduce the computational complexity, significantly. Also some numerical approaches based on Gaussian elimination and Gauss-Seidel methods to find outer estimations for the parametric united solution set are given. Finally, some numerical experiments are given to illustrate the performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buslowicz, M.: Robust stability of positive continuous-time linear systems with delays. Int. J. Appl. Math. Comput. Sci. 20(4), 665–670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chauvin, C., Müller, M., Weber, A.: An application of quantifier elimination to mathematical biology. In: Computer Algebra in Science and Engineering, World Scientific, pp 287–296 (1994)

  3. Dehghani-Madiseh, M., Dehghan, M.: Generalized solution sets of the interval generalized Sylvester matrix equation \({\sum }_{i=1}^{p}{{\mathbf {A}}_{i}X_{i}}+{\sum }_{j=1}^{q}{Y_{j}{\mathbf {B}}_{j}}={\mathbf {C}}\) and some approaches for inner and outer estimations. Comput. Math. Appl. 68, 1758–1774 (2014)

  4. El Guennouni, A., Jbilou, K., Sadok, H.: A block version of BICGSTAB for linear systems with multiple right-hand sides. Electronic Trans. Numer. Anal. 16, 129–142 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Elishakoff, I., Ohsaki, M.: Optimization and Anti-Optimization of Structures Under Uncertainty. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  6. Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  7. Gardeñes, E., Trepat, A.: Fundamentals of SIGLA, an interval computing system over the completed set of intervals. Computing 24, 161–179 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hashemi, B., Dehghan, M.: Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation A X = B. Appl. Math. 235, 2969–2978 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Hashemi, B., Dehghan, M.: The interval Lyapunov matrix equation: Analytical results and an efficient numerical technique for outer estimation of the united solution set. Math. Comput. Modelling 55, 622–633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herrero, P., Sainz, M.A., Vehí, J., Jaulin, L.: Quantified set inversion algorithm with applications to control. Reliab. Comput. 11, 369–382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hladík, M.: Enclosures for the solution set of parametric interval linear systems. Int. J. Appl. Math. Comput. Sci. 22, 561–574 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press (1991)

  13. Jansson, C., Rump, S.M.: Rigorous solution of linear programming problems with uncertain data. ZOR, Methods Models Oper. Res. 35, 87–111 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jbilou, K.: Smoothing iterative block methods for linear systems with multiple right-hand sides. J. Comput. Appl. Math. 107, 97–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaucher, E.: Interval analysis in the extended interval space IR. Computing Suppl. 2, 33–49 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolev, L.V.: Automatic computation of linear interval enclosure. Reliab. Comput. 7(1), 17–28 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolev, L.V.: Outer solution of linear systems whose elements are affine functions of interval parameters. Reliab. Comput. 6(12), 493–501 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolev, L.V.: A method for outer interval solution of linear parametric systems. Reliab. Comput. 10(3), 227–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lagoa, C., Barmish, B.: Distributionally robust monte carlo simulation: a tutorial survey. In: Proceedings of the 15th IFAC World Congress, IFAC, pp 1327–1338 (2002)

  20. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  21. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  22. Popova, E.: On the solution of parametrised linear systems. In: Kraemer, W., Wolff von Gudenberg, J. (eds.) Scientific Computing, Validated Numerics, Interval Methods, pp 127–138. Kluwer Acad. Publishers (2001)

  23. Popova, E., Krämer, W.: Inner and outer bounds for the solution set of parametric linear systems. J. Comput. Appl. Math. 199, 310–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Popova, E., Krämer, W.: Characterization of AE solution sets to a class of parametric linear systems. C. R. Acad. Bulgare Sci. 64, 325–332 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Popova, E.: Explicit description of AE solution sets for parametric linear systems. SIAM J. Matrix Anal. Appl. 33, 1172–1189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Popova, E., Hladík, M.: Outer enclosures to the parametric AE solution set. Soft Comput. 17, 1403–1414 (2013)

    Article  MATH  Google Scholar 

  27. Popova, E.: On the unbounded parametric tolerable solution set. Numer. Algorithms 69(1), 169–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Popova, E.: Improved enclosure for some parametric solution sets with linear shape. Comput. Math. Appl. 68, 994–1005 (2014)

    Article  MathSciNet  Google Scholar 

  29. Rohn, J.: An improvement of the Bauer-Skeel bounds, Technical Report V-1065, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague

  30. Rohn, J.: Cheap and tight bounds: The recent result by E. Hansen can be made more efficient. Interval Computations 4, 13–21 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Rump, S.M.: INTLAB – Interval Laboratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp 77–104. Kluwer, Dordrecht (1999)

  32. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica 19, 287–449 (2010)

  33. Seif, N.P., Hussein, S.A., Deif, A.S.: The interval Sylvester matrix equation. Computing 52, 233–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sharaya, I.A.: The tolerable solution set of interval linear system of equations with dependent coefficients, in Numerical Mathematics. In: Proceedings of XIV Baikal International School-seminar ”Optimization methods and their applications”, Irkutsk, Russia, 2008, vol. 3, Melentiev Energy Systems Institute SB RAS, Irkutsk (in Russian), pp 196–203 (2008)

  35. Sharaya, I.A., Shary, S.P.: Tolerable solution set for interval linear systems with constraints on coefficients. Reliab. Comput. 15, 345–357 (2011)

    MathSciNet  Google Scholar 

  36. Shary, S.P.: Linear static systems under interval uncertainty: Algorithms to solve control and stabilization problems. In: Reliab. Comput. Supplement. Extended Abstracts of APIC95, International Workshop on Applications of Interval Computations, El Paso, TX, pp. 181–184 (1995)

  37. Shary, S.P.: Interval Gauss-Seidel method for generalized solution sets to interval linear systems. Reliab. Comput. 7, 141–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shary, S.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. Comput. 8, 321–418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shashikhin, V.N.: Robust stabilization of linear interval systems. J. Appl. Math. Mech. 66, 393–400 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Skalna, I.: A method for outer interval solution of systems of linear equations depending linearly on interval parameters. Reliab. Comput. 12, 107–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sokolova, S., Kuzmina, E.: Dynamic properties of interval systems. SPIIRAS Proceedings Nauka (in Russian) 7, 215–221 (2008)

    Google Scholar 

  42. Stewart, G.W.: Matrix Algorithms, Vol. 1: Basic Decompositions. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  43. Uhlig, F.: On the matrix equation AX = B with applications to the generators of a controllability matrix. Linear Algebra Appl. 85, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani-Madiseh, M., Dehghan, M. Parametric AE-solution sets to the parametric linear systems with multiple right-hand sides and parametric matrix equation A(p)X = B(p). Numer Algor 73, 245–279 (2016). https://doi.org/10.1007/s11075-015-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0094-3

Keywords

Mathematics Subject Classification (2010)

Navigation