Abstract
In this paper, the multiplicative least square method is introduced and is applied to integrals for the finite product representation of the positive functions. Hence, many nonlinear functions can be represented by well-behaved exponential functions. Product representation produces an accurate representation of signals, especially where exponentials occur. Some real applications of nonlinear exponential signals will be selected to demonstrate the applicability and efficiency of proposed representation.
Similar content being viewed by others
References
Bashirov, A., Kurpınar, E., Özyapıcı, A.: Multiplicative calculus and its applications. J. Math. Anal. Appl. 337(1), 36–48 (2008)
Bilgehan, B.: Efficient approximation for linear and non-linear signal representation. IET Signal Proc. doi:10.1049/iet-spr.2014.0070
Bashirov, A., Misirli, E., Tandogdu, Y., Ozyapici, A.: On modeling with multiplicative differential equations. Appl. Math. J. Chin. Univ. 26(4), 425–428 (2011)
Chen, R., Leung, P.L.: The decay of OSL signals as stretched-expoenetial functions. Radiat. Meas. 37, 519–526 (2003)
Duché, Q., Acosta, O., Gambarota, G., Merlet, I., Salvado, O., Saint-Jalmes, H.: Bi-exponential magnetic resonance signal model for partial volume computation. Med. Image Comput. Comput. Assist. Interv. 2012 15(Pt 1), 231–238 (2014)
Englehardt, J., Swartout, J., Loewenstine, C.: A new theoretical discrete growth distribution with verification for microbial counts in water. Risk Anal. 29(6), 841–856 (2009)
Filip, D. A., Piatecki, C.: A non-Newtonian examination of the theory of exogenous economic growth. CNCSIS - UEFISCSU (project number PNII IDEI 2366/2008) and Laboratoire d’Economie d’Orleans (LEO) (2010)
Florack, L., Assen, H.V.: Multiplicative calculus in biomedical image analysis. J. Math. Imaging Vision 42(1), 64–75
Grossman, M., Katz, R.: Non-Newtonian Calculus. Pigeon Cove, Lee Press, Massachusats (1972)
Grossman, M., Calculus, Bigeometric: A System with a Scale-Free Derivative. Archimedes Foundation, Rockport, Massachusats (1983)
Jensen, J., Jensen, S.H., Hansen, E.: Harmonic Exponential Modeling of Transitional Speech Segments 0-7803-6293-41001@2000IEEE
Misirli, E., Gurefe, Y.: Multiplicative Adams Bashforth Moulton methods. Numer. Algoritm. 57(4), 425–439 (2011). doi:10.1007/s11075-010-9437-2
Ozyapici, A., Misirli, E.: Exponential approximations on multiplicative calculus. PJMS (Proc. Jangjean Math. Soc.) 12(2), 227–236 (2009)
Riza, M., Özyapıcı, A., Kurpınar, E.: Multiplicative finite difference methods. Q. Appl. Math. 67(4), 745–754 (2009)
Ozyapici, A., Riza, M., Bilgehan, B., Bashirov, A.: On multiplicative and Volterra minimization methods. Numer. Algoritm. 67, 623–636 (2014)
Starer, D.: IEEE Trans. Signal Process. 40(6) (1992)
Uzer, A.: Multiplicative type complex calculus as an alternative to the classical calculus. Comput. Math. Appl. 60(10), 2725–2737
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ozyapici, A., Bilgehan, B. Finite product representation via multiplicative calculus and its applications to exponential signal processing. Numer Algor 71, 475–489 (2016). https://doi.org/10.1007/s11075-015-0004-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-015-0004-8