Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Series solutions of non-similarity boundary layer flows of nano-fluids over stretching surfaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper the convergent series solutions for the non-similarity flow of viscous fluid with nanoparticles are given. Fundamental equations employed in the mathematical modelling include the novel aspects of Brownian motion and thermophoresis. Non-similarity flow is induced by a stretching sheet with arbitrary velocity. The so-called homotopy analysis method (HAM) is applied to gain the convergent series solutions of the nonlinear partial differential equation. It is noticed that flow field, temperature and nanoparticle volume fraction profile are greatly influenced by the physical parameters such as Prandtl number, Brownian motion parameter, thermophoresis parameter and Lewis number. To the best of our knowledge, the present analysis seems to be a first attempt to non-similarity boundary layer flows of viscous fluids with nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crane, L.J.: Flow past a stretching sheet. Z. Angew. Math. Phys. (ZAMP) 21, 645–647 (1970)

    Article  Google Scholar 

  2. Rashidi, M.M., Abelman, S., Mehr, N.F.: Entropy generation in a steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transfer 62, 515–525 (2013)

    Article  MATH  Google Scholar 

  3. Turkyilmazoglu, M.: Dual and triple solutions for MHD slip flow of non-Newtonian fluid over a shrinking surface. Comput. Fluids 70, 53–58 (2012)

    Article  MathSciNet  Google Scholar 

  4. Mukhopadhyay, S., Gorla, S.R.: Unsteady MHD boundary layer flow of an upper convected Maxwell fluid past a stretching sheet with first order constructive/destructive chemical reaction. J. Naval Architecture Eng. 9, 123–133 (2012)

    Google Scholar 

  5. Hayat, T., Shehzad, S.A., Qasim, M., Obaidat, S.: Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source. Nucl. Eng. Des. 243, 15–19 (2012)

    Article  Google Scholar 

  6. Liao, S.J.: A general approach to get series solution of non-similarity boundary-layer flows. J. Commun. Nonlinear Sci. Nummer. Simulat. 14, 2144–2159 (2009)

    Article  MATH  Google Scholar 

  7. You, X.Ch., Xu, H., Liao, S.J.: On the nonsimilarity boundary-layer flows of second-order fluids over a stretching sheet, ASME. J. Applied Mechanics 77 (2010). doi:10.1115/1.3173764

  8. Kousar, N., Liao, S.J.: Series solution of non-similarity natural convection boundary-layer flows over permeable vertical surface. Sci. China Ser. G Phys. Mech. Astron. 53(2), 360–368 (2010)

    Article  MathSciNet  Google Scholar 

  9. Nakhehi, M.E., Nobari, M.R.H., Tabrizi, H.B.: Non-similarity thermal boundary layer flow over a stretching flat plate. Chinese Phys. Letters 29(10), 104703 (2012)

    Article  Google Scholar 

  10. Kousar, N., Mahmood, R.: Series solution of non-similarity boundary-layer flow in porous medium. J. Applied Mathematics 4, 127–136 (2013)

    Article  Google Scholar 

  11. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Thermal Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  12. Alsaedi, A., Awais, M., Hayat, T.: Effects of heat generation/absorption on stagnation point flow nanofluid over a surface with convective boundary conditions. Comm. Nonlinear Sci. Num. Simulat. 17, 4210–4223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Narayana, M., Sibanda, P.: Laminar flow of a nanofluid over an unsteady streching sheet. Int. J. Heat Mass Transfer 55, 7552–7560 (2012)

    Article  Google Scholar 

  14. Ibrahim, W., Shankarand, B., Nandepponavar, M.M.: MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int. J. Heat Mass Transfer 56, 1–9 (2013)

    Article  MATH  Google Scholar 

  15. Rashidi, M.M., Anwar, O., Asadi, M., Rastegari, M.T.: DTM-Pade modelling of natural convective boundary layer flow of a nanofluid past a vertical surface. Int. J. Thermal Enviorment Eng 4, 13–24 (2012)

    Article  Google Scholar 

  16. Turkyilmazoglu, M., Pop, I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Transfer 59, 167–171 (2013)

    Article  Google Scholar 

  17. Sheikholeslami, M., Hatam, M., Ganji, D.D.: Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J. Molecular Liquids 190, 112–120 (2014)

    Article  Google Scholar 

  18. Turkyilmazoglu, M., Ashorynejad, H.R., Sheikholeslami, M., Pop, I., Ganji, D.D.: Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Int. J. Heat Mass Transfer 49, 427–436 (2013)

    Article  MATH  Google Scholar 

  19. Turkyilmazoglu, M.: Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer, ASME. J. Heat Transfer 136, 031704 (2013)

    Article  MATH  Google Scholar 

  20. Khan, W.A.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transfer 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  21. Nield, D.A., Kuznetsov, A.V.: The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792–5795 (2009)

    Article  Google Scholar 

  22. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  MATH  Google Scholar 

  23. Gorder, R.A.V., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numm. Simulat. 15, 1494–1500 (2010)

    Article  Google Scholar 

  24. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II)- An application in fluid mechanics. Int. J. Nonlinear Mech. 32, 815–822 (1997)

    Article  MATH  Google Scholar 

  25. Liao, S.J.: An optimal homotopy analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numm. Simulat. 15, 2315–2332 (2010)

    Google Scholar 

  26. Ghoreishi, M., Ismail, A.I.B.Md., Alomari, A.k., Bataineh, A.S: The comparison between homotopy analysis method and optimal homotopy asymtotic method for nonlinear age structured population models. Commun. Nonlinear Sci. Numm. Simulat. 17, 1163–1177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gorder, R.A.V.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algoritm. 61, 613–629 (2012)

    Article  Google Scholar 

  28. Tao, F., You, X.Ch.: Optimal homotopy analysis method for nonlinear differential equations in the boundary layer. Numer. Algoritm. 62, 337–354 (2013)

    Article  MATH  Google Scholar 

  29. Zhao, N., Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numm. Simulat. 15, 2026–2036 (2010)

    Article  Google Scholar 

  30. Mallory, K., Gorder, R.A.V.: Optimal homotopy analysis and control of error for solution to the non-local Whitham equation. Numer. Algoritm. 66, 843–863 (2013)

    Google Scholar 

  31. Liao, S.J.: Beyond perturbation: Introduction to the homotopy analysis method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  32. Liao, S.J.: Homotopy analysis method in non-linear differential equations. Higher education press, Beijing (2012)

    Book  Google Scholar 

  33. Farooq, U., Liang, L.Z.: Non-linear heat transfer in a two layer flow with nanofluids by OHAM, ASME. J. Heat Mass Transfer 2(136) (2014). doi:10.1115/1.4025432

  34. Liao, S.J.: Notes on the homotopy analysis method- Some defnitions and theorems. J. Commun. Nonlinear Sci. Nummer. Simulat. 14, 983–997 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Hayat, T., Alsaedi, A. et al. Series solutions of non-similarity boundary layer flows of nano-fluids over stretching surfaces. Numer Algor 70, 43–59 (2015). https://doi.org/10.1007/s11075-014-9934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9934-9

Keywords

Navigation