Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A new constrained total variational deblurring model and its fast algorithm

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Although image intensities are non-negative quantities, imposing positivity is not always considered in restoration models due to a lack of simple and robust methods of imposing the constraint. This paper proposes a suitable exponential type transform and applies it to the commonly-used total variation model to achieve implicitly constrained solution (positivity at its lower bound and a prescribed intensity value at the upper bound). Further to establish convergence, a convex model is proposed through a relaxation of the transformed functional. Numerical algorithms are presented to solve the resulting non-linear partial differential equations. Test results show that the proposed method is competitive when compared with existing methods in simple cases and more superior in other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, M.S.C., Almeida, L.B.: Blind and semi-blind deblurring of natural images. IEEE T. Image Process. 19 (1), 36–52 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bahnam, M.A., Katsaggelos, A.K.: Digital Image Restoration. IEEE Signal Proc. Mag. 14 (2), 24–41 (1997)

    Article  Google Scholar 

  3. Bar, L., Sochen, N., Kiryati, N.: Semi-blind image restoration via Mumford-Shah regularization . IEEE T. Image Process. 15 (2), 483–493 (2006)

    Article  Google Scholar 

  4. Bardsley, J.M., Vogel, C.R.: A nonnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25 (4), 1326–1343 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization. SIAM publications (2001)

  6. Benvenuto, F., Zanella, R., Zanni, L. , Bertero, M.: Nonnegative least-squares image deblurring: improved gradient projection approaches. Inverse Probl. 26 (2), 025004 (2009)

    Article  MathSciNet  Google Scholar 

  7. Biraud, Y.: A new approach for increasing the resolving power by data processing. Astron. Astrophys. 1, 124–127 (1969)

    Google Scholar 

  8. Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM J. Imaging Sci. 3, 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brito-Loeza, C., Chen, K.: Multigrid method for a modified curvature driven diffusion model for image inpainting. J. Comput. Math. 26 (6), 856-875 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Brito-Loeza, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3(3), 363–389 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cai, J.F., Ji, H., Liu, C., Shen, Z.: Framelet based blind motion deblurring from a single image. IEEE T. Image Process. 21 (2012). 562-572

  12. Calvetti, D., Landi, G., Reichel, L., Sgallari, F.: Nonnegativity and iterative methods for ill-posed problems. Inverse Probl. 20, 17471758 (2004)

    Article  MathSciNet  Google Scholar 

  13. Calvetti, D., Lewis, B., Reichel, L., Sgallari, F.: Tikhonov regularization with nonnegativity constraint Electron. Trans. Numer. Anal. 18, 153173 (2004)

    MathSciNet  Google Scholar 

  14. Antonin, C., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods sparse recover 9, 263-340 (2010)

    Google Scholar 

  15. Chan, R.H., Tao, M., Yuan, X.M.: Constrained total variational deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6, 680-697 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chan, T.F., Chen, K.: On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation. Numer. Algoritm. 41 (4), 387-411 (2005)

    Article  MathSciNet  Google Scholar 

  17. Chan, T.F., Vese, L.A.: Active contours without edges. CAM Report, UCLA, pages 9853 (1998)

  18. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE T. Image Process. 7 (3), 370-375 (1998)

    Article  Google Scholar 

  19. Chang, Q., Tai, X.-C., Xing, L.: A compound algorithm of denoising using second-order and fourth-order partial differential equations. Numer. Math. Theor. Meth. Appl. 2, 353-376 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Chen, K., Piccolomini, E.L., Zama F.: An automatic regularization parameter selection algorithm in the total variation model for image deblurring. Numer. Algorithms, 120 (2013)

  21. Dong, Y.: M. Hintermuller, and M.M. Rincon-Camacho. Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 83104 (2011)

  22. Hansen, C., Nagy, J.G., OLeary, D.P.: Deblurring Images. Spectra, and Filtering. SIAM publications, Matrices (2006)

    Book  MATH  Google Scholar 

  23. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Al- gorithms Part 1: Fundamentals, volume 305 of A Series of Comprehensive Studies in Mathe- matics. Springer (1993)

  24. Huang, Y., Ng, M.K., Wen, Y.-W.: A fast total variation minimization method for image restoration. Multiscale Model Simul. 7, 774-795 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Proc. Mag. 13 (3), 43-64 (1996)

    Article  Google Scholar 

  26. Kundur, D., Hatzinakos, D.: Blind image deconvolution revisited. IEEE Signal Mag. 13 (6), 61-63 (1996)

    Article  Google Scholar 

  27. Lagendijk, R.L., Biemond, I., Boekee, D.E.: Regularized iterative image restoration with ringing reduction. IEEE T. Acoust. Speech 36 (12), 1874-1888 (1988)

    Article  MATH  Google Scholar 

  28. Papafitsoros, K., Schonlieb, C.-B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48 (2), 308-338 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259268 (1992)

    Article  Google Scholar 

  30. Sezan, M.I., Tekalp, A.M.: Survey of recent developments in digital image restoration. Opt. Eng. 29 (5), 393-404 (1990)

    Article  Google Scholar 

  31. Sezan, M.I., Trussell, H.J.: Prototype image constraints for set-theoretic image restoration. IEEE T. Signal Proces. 39 (10), 22752285 (1991)

    Article  Google Scholar 

  32. Shan, Q. , Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In ACM SIGGRAPH 2008 Papers (2008)

  33. Shi, Y., Chang, Q., Xu, J. : Convergence of fixed point iteration for deblurring and denoising problem. Appl. Math. Comput. 189, 1178-1185 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM (2002)

  35. Wang, F.: Alternating Direction Methods for Image Recovery. Hong Kong Baptist University, PhD thesis (2012)

  36. Wang, W., Ng, M.K.: On algorithms for automatic deblurring from a single image. J. Comput. Math. 30, 80100 (2012)

    MathSciNet  Google Scholar 

  37. Wen, Y., Chan, R.H.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE T. Image Process. 21, 17701781 (2012)

    Google Scholar 

  38. Whyte, O., Sivic, J., Zisserman, A., Ponce, J. : Non-uniform deblurring for shaken images. Int. J. Comput. Vision 98(2), 168186 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, B.M., Chen, K. & Harding, S.P. A new constrained total variational deblurring model and its fast algorithm. Numer Algor 69, 415–441 (2015). https://doi.org/10.1007/s11075-014-9904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9904-2

Keywords

Mathematics Subject Classifications (2010)

Navigation