Abstract
Although image intensities are non-negative quantities, imposing positivity is not always considered in restoration models due to a lack of simple and robust methods of imposing the constraint. This paper proposes a suitable exponential type transform and applies it to the commonly-used total variation model to achieve implicitly constrained solution (positivity at its lower bound and a prescribed intensity value at the upper bound). Further to establish convergence, a convex model is proposed through a relaxation of the transformed functional. Numerical algorithms are presented to solve the resulting non-linear partial differential equations. Test results show that the proposed method is competitive when compared with existing methods in simple cases and more superior in other cases.
Similar content being viewed by others
References
Almeida, M.S.C., Almeida, L.B.: Blind and semi-blind deblurring of natural images. IEEE T. Image Process. 19 (1), 36–52 (2010)
Bahnam, M.A., Katsaggelos, A.K.: Digital Image Restoration. IEEE Signal Proc. Mag. 14 (2), 24–41 (1997)
Bar, L., Sochen, N., Kiryati, N.: Semi-blind image restoration via Mumford-Shah regularization . IEEE T. Image Process. 15 (2), 483–493 (2006)
Bardsley, J.M., Vogel, C.R.: A nonnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25 (4), 1326–1343 (2004)
Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization. SIAM publications (2001)
Benvenuto, F., Zanella, R., Zanni, L. , Bertero, M.: Nonnegative least-squares image deblurring: improved gradient projection approaches. Inverse Probl. 26 (2), 025004 (2009)
Biraud, Y.: A new approach for increasing the resolving power by data processing. Astron. Astrophys. 1, 124–127 (1969)
Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM J. Imaging Sci. 3, 492–526 (2010)
Brito-Loeza, C., Chen, K.: Multigrid method for a modified curvature driven diffusion model for image inpainting. J. Comput. Math. 26 (6), 856-875 (2008)
Brito-Loeza, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3(3), 363–389 (2010)
Cai, J.F., Ji, H., Liu, C., Shen, Z.: Framelet based blind motion deblurring from a single image. IEEE T. Image Process. 21 (2012). 562-572
Calvetti, D., Landi, G., Reichel, L., Sgallari, F.: Nonnegativity and iterative methods for ill-posed problems. Inverse Probl. 20, 17471758 (2004)
Calvetti, D., Lewis, B., Reichel, L., Sgallari, F.: Tikhonov regularization with nonnegativity constraint Electron. Trans. Numer. Anal. 18, 153173 (2004)
Antonin, C., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods sparse recover 9, 263-340 (2010)
Chan, R.H., Tao, M., Yuan, X.M.: Constrained total variational deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6, 680-697 (2013)
Chan, T.F., Chen, K.: On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation. Numer. Algoritm. 41 (4), 387-411 (2005)
Chan, T.F., Vese, L.A.: Active contours without edges. CAM Report, UCLA, pages 9853 (1998)
Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE T. Image Process. 7 (3), 370-375 (1998)
Chang, Q., Tai, X.-C., Xing, L.: A compound algorithm of denoising using second-order and fourth-order partial differential equations. Numer. Math. Theor. Meth. Appl. 2, 353-376 (2009)
Chen, K., Piccolomini, E.L., Zama F.: An automatic regularization parameter selection algorithm in the total variation model for image deblurring. Numer. Algorithms, 120 (2013)
Dong, Y.: M. Hintermuller, and M.M. Rincon-Camacho. Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 83104 (2011)
Hansen, C., Nagy, J.G., OLeary, D.P.: Deblurring Images. Spectra, and Filtering. SIAM publications, Matrices (2006)
Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Al- gorithms Part 1: Fundamentals, volume 305 of A Series of Comprehensive Studies in Mathe- matics. Springer (1993)
Huang, Y., Ng, M.K., Wen, Y.-W.: A fast total variation minimization method for image restoration. Multiscale Model Simul. 7, 774-795 (2008)
Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Proc. Mag. 13 (3), 43-64 (1996)
Kundur, D., Hatzinakos, D.: Blind image deconvolution revisited. IEEE Signal Mag. 13 (6), 61-63 (1996)
Lagendijk, R.L., Biemond, I., Boekee, D.E.: Regularized iterative image restoration with ringing reduction. IEEE T. Acoust. Speech 36 (12), 1874-1888 (1988)
Papafitsoros, K., Schonlieb, C.-B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48 (2), 308-338 (2014)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259268 (1992)
Sezan, M.I., Tekalp, A.M.: Survey of recent developments in digital image restoration. Opt. Eng. 29 (5), 393-404 (1990)
Sezan, M.I., Trussell, H.J.: Prototype image constraints for set-theoretic image restoration. IEEE T. Signal Proces. 39 (10), 22752285 (1991)
Shan, Q. , Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In ACM SIGGRAPH 2008 Papers (2008)
Shi, Y., Chang, Q., Xu, J. : Convergence of fixed point iteration for deblurring and denoising problem. Appl. Math. Comput. 189, 1178-1185 (2007)
Vogel, C.R.: Computational Methods for Inverse Problems. SIAM (2002)
Wang, F.: Alternating Direction Methods for Image Recovery. Hong Kong Baptist University, PhD thesis (2012)
Wang, W., Ng, M.K.: On algorithms for automatic deblurring from a single image. J. Comput. Math. 30, 80100 (2012)
Wen, Y., Chan, R.H.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE T. Image Process. 21, 17701781 (2012)
Whyte, O., Sivic, J., Zisserman, A., Ponce, J. : Non-uniform deblurring for shaken images. Int. J. Comput. Vision 98(2), 168186 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Williams, B.M., Chen, K. & Harding, S.P. A new constrained total variational deblurring model and its fast algorithm. Numer Algor 69, 415–441 (2015). https://doi.org/10.1007/s11075-014-9904-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-014-9904-2