Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A new class of three-point methods with optimal convergence order eight and its dynamics

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We establish a new class of three-point methods for the computation of simple zeros of a scalar function. Based on the two-point optimal method by Ostrowski (1966), we construct a family of order eight methods which use three evaluations of f and one of f′ and therefore have an efficiency index equal to \(\sqrt [4]{8}\approx 1.682\) and are optimal in the sense of the Kung and Traub conjecture (Kung and Traub J. Assoc. Comput. Math. 21, 634–651, 1974). Moreover, the dynamics of the proposed methods are shown with some comparisons to other existing methods. Numerical comparison with existing optimal schemes suggests that the new class provides a valuable alternative for solving nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Plaza, S.: Iterative root-finding methods. Unpublished report (2004)

  2. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. J. Sci. 10, 3–35 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Amat, S., Busquirer, S., Plaza, S.: Dynamics of a family of third-order itrative methods that do not require using second derivatives. J. Appl. Math. Comput. 154, 735–746 (2004)

    Article  MATH  Google Scholar 

  4. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. J. Aeq. Math. 69, 212–223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. J. Numer. Algorithms 65(1), 153-169 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225, 105–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chun, C., Lee, M.Y., Neta, B., Dzunic, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. J. Appl. Math. Comput. 218, 6427–6438 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. J. Appl. Math. Comput. 223, 506–519 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cordero, A., Fardi, M., Ghasemi, M., Torregrosa, J.R.: Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. J. Calcolo, 1–14 (2012)

  10. Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Three-step iterative methods with optimal eighth-order convergence. J. Comput. Appl. Math. 235, 3189–3194 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hazrat, R.: Mathematica: A Problem-Centered Approach. Springer-Verlag London Limited, Berlin (2010)

    Book  Google Scholar 

  12. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. J. Math. Comput. 20, 434–437 (1966)

    Article  MATH  Google Scholar 

  13. King, R.F.: Family of four order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 634–651 (1974)

    Article  MathSciNet  Google Scholar 

  15. Neta, B.: On a family of multipoint methods for nonlinear equations. Int. J. Comput. Math. 9, 353–361 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Neta, B., Chun, C., Scott, M.: Basin of attractions for optimal eighth order methods to find simpl roots of nonlinear equations. J. Appl. Math. Comput. Accepted (2013)

  17. Neta, B., Scott, M., Chun, C.: Basin attractors for various methods for multiple roots. J. Appl. Math. Comput. 218, 5043–5066 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Neta, B., Scott, M., Chun, C.: Basin of attraction for several methods to find simple roots of nonlinear equations. J. Appl. Math. Comput. 218, 10548–10556 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1966)

    MATH  Google Scholar 

  20. Petkovic, M.S., Neta, B., Petkovic, L.D., Dzunic, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Waltham (2013)

    MATH  Google Scholar 

  21. Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. J. Appl. Math. Comput. 218, 2584–2599 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. J. Numer. Algorithms 54, 445–458 (2010)

    Article  MATH  Google Scholar 

  23. Soleymani, F., Lotfi, T., Bakhtiari, P.: A multi-step class of iterative methods for nonlinear systems, J. Optim. Lett. (2013)

  24. Soleymani, F., Sharifi, M., Mousavi, B.S.: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 153, 225–236 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stewart, B.D.: Attractor Basins of Various Root-Finding Methods M.S. thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey (2001)

  26. Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)

    MATH  Google Scholar 

  28. Vrscay, E.R., Gilbert, W.J.: Extraneous fixed points, basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions. J. Numer. Math. 52, 1–16 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, X., Liu, L.: New eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 234, 1611–1620 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Siegmund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, T., Sharifi, S., Salimi, M. et al. A new class of three-point methods with optimal convergence order eight and its dynamics. Numer Algor 68, 261–288 (2015). https://doi.org/10.1007/s11075-014-9843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9843-y

Keywords

Navigation