Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A model-hybrid approach for unconstrained optimization problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a model-hybrid approach for nonlinear optimization that employs both trust region method and quasi-Newton method, which can avoid possibly resolve the trust region subproblem if the trial step is not acceptable. In particular, unlike the traditional trust region methods, the new approach does not use a single approximate model from beginning to the end, but instead employs quadratic model or conic model at every iteration adaptively. We show that the new algorithm preserves the strong convergence properties of trust region methods. Numerical results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, N.Y., Xiao, Y., Zhou, F.J.: Nonmonotonic trust region algorithm. J. Optim. Theory. Appl. 76(2), 259–285 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Mo, J.T., Liu, C.Y., Yan, S.C.: A nonmonotone trust region method based on nonincreasing technique of weighted average of the successive function values. J. Comput. Appl. Math. 209, 97–108 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gu, N.Z., Mo, J.T.: Incorporating nonmonotone strategies into the trust region method for unconstrained optimization. Appl. Math. Comput. 55, 2158–2172 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu, J.H., Ma, C.F.: A nonmonotone trust region method with new inexact line search for unconstrained optimization. Numer. Algorithm. (2012). doi:10.1007/s11075-012-9652-0

  5. Zhao, X., Wang, X.Y.: A nonmonotone self-adaptive trust region algorithm with line search based on the new conic model. J. Taiyuan Univ. Sci. Tech. 31(1), 68–71 (2010)

    Google Scholar 

  6. Nocedal, J., Yuan, Y.X.: Combining Trust-Region and Line-Search Techniques, Optimization Technology Center mar OTC 98/04 (1998)

  7. Gertz, E.M.: A quasi-Newton trust-region method. Math. Program 100, 447–470 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Qu, S.J., Zhang, K.C., Wang, F.S.: A global optimization using linear relaxation for generalized geometric programming. Eur. J. Oper. Res. 190, 345–356 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, F.S., Zhang, K.C.: A hybrid algorithm for nonlinear minimax problems. Ann. Oper. Res. 164, 167–191 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davidon, W.C.: Conic approximations and colinear scaling for optimizers. SIAM J. Numer. Anal. 17(2), 268–281 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sorensen, D.C.: The q-superlinear convergence of a colinear scaling algorithm for unconstrained optimization. SIAM J. Numer. Anal. 17(1), 84–114 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ariyawansa, K.A.: Deriving collinear scaling algorithms as extension of quasi-Newton methods and the local convergence of DFP and BFGS related collinear scaling algorithms. Math. Program 49, 23–48 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sheng, S.: Interpolation by conic model for unconstrained optimization. Computing 54, 83–98 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sun, W.Y.: Nonquadratic model optimization methods. Asia Pac. J. Oper. Res. 13, 43–63 (1996)

    MATH  Google Scholar 

  15. Gourgeon, H., Nocedal, J.: A conic algorithm for optimization. SIAM J. Sci. Comput. 6, 253–267 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Di, S., Sun, W.Y.: A trust region method for conic model to solve unconstrained optimization. Optim. Methods Softw. 6, 237–263 (1996)

    Article  Google Scholar 

  17. Xu, C.X., Yang, X.Y.: Convergence of conic quasi-Newton trust region menthods for unconstrained minimization. Mathematica Applicata 11, 71–76 (1998)

    MATH  Google Scholar 

  18. Fu, J.H., Sun, W.Y., Sampaio, R.J.B.: An adaptive approach of conic trust-region method for unconstrained optimization problems. J. Appl. Math. Comput. 19, 165–177 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, J.Y., Ni, Q.: An algorithm for solving new trust region subproblem with conic model. Sci. China Ser. A 51, 461–473 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grandinetti, L.: Some investigations in a new algorithm for nonlinear optimization based on conic models of the objective function. J. Optim. Theory Appl. 43, 1–21 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B., Mangasarian, O.L., Ritter, K. (eds.) Nonlinear Programming, pp. 31–66. Academic, New York (1970)

    Chapter  Google Scholar 

  22. Zhou, Q.Y., Zhang, C.: A new nonmonotone adaptive trust region method based on simple quadratic models. J. Appl. Math. Comput. 40, 111–123 (2012)

    Article  MathSciNet  Google Scholar 

  23. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM Publications, Philadelphia (2000)

    Book  MATH  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    Google Scholar 

  25. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 2, p. 1C27. Academic, New York (1975)

    Google Scholar 

  26. Dennis, J.E., Mei, H.H.W.: Two new unconstrained optimization algorithms which use function and gradient values. J. Optim. Theory Appl. 28, 453–482 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shultz, G.A., Schnabel, R.B., Byrd, R.H.: A family of trust-region based algorithm for unconstrained minimization with strong global convergence. SIAM J. Numer. Anal. 22, 47–67 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Byrd, R.H., Schnabel, R.B., Shultz, G.A.: Approximation solution of the trust region problem by minimization over two-dimensional subspace. Math. Program 40, 247–263 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Steihaug, T.: The conjugate gradient method and trust-regions in large scale optimization. SIAM J. Numer. Anal. 20, 626–627 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Toint, P.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff, I.S. (ed.) Sparse Matrices and Their Uses, pp. 57–88. Academic, London (1981)

    Google Scholar 

  31. More, J.J., Sorensen, D.C.: Computing a trust-region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Program 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Sheng Wang.

Additional information

This work is supported by the National Natural Science Foundation of China (11171250); The Natural Science Foundation of Shanxi Province of China (2011011002-2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FS., Jian, JB. & Wang, CL. A model-hybrid approach for unconstrained optimization problems. Numer Algor 66, 741–759 (2014). https://doi.org/10.1007/s11075-013-9757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9757-0

Keywords

Navigation