Abstract
In this paper, we propose a novel preconditioned solver for generalized Hermitian eigenvalue problems. More specifically, we address the case of a definite matrix pencil \(A-\lambda B\), that is, A, B are Hermitian and there is a shift \(\lambda _{0}\) such that \(A-\lambda _{0} B\) is definite. Our new method can be seen as a variant of the popular LOBPCG method operating in an indefinite inner product. It also turns out to be a generalization of the recently proposed LOBP4DCG method by Bai and Li for solving product eigenvalue problems. Several numerical experiments demonstrate the effectiveness of our method for addressing certain product and quadratic eigenvalue problems.
Similar content being viewed by others
References
HSL.: A collection of Fortran codes for large scale scientific computation. Available from http://www.hsl.rl.ac.uk/catalogue/ (2011)
Arbenz, P., Drmač, Z.: On positive semidefinite matrices with known null space. SIAM J. Matrix Anal. Appl. 24(1), 132–149 (2002)
Bai, Z., Demmel, J.W., Dongarra, J.J., Ruhe, A., van der Vorst, H. (eds.): Templates for the solution of algebraic eigenvalue problems. Software, Environments, and Tools. SIAM, Philadelphia (2000)
Bai, Z., Li, R.-C.: Minimization principles for the linear response eigenvalue problem I: theory. SIAM J. Matrix Anal. Appl. 33(4), 1075–1100 (2012)
Bai, Z., Li, R.-C.: Minimization principles for the linear response eigenvalue problem II: computation. SIAM J. Matrix Anal. Appl. 34(2), 392–416 (2013)
Bai, Z., Li, R.-C.: Minimization principles for the linear response eigenvalue problem III: general case. Mathematics preprint series. The University of Texas, Arlington (2013)
Benner, P., Kressner, D., Mehrmann, V.: Skew-Hamiltonian and Hamiltonian eigenvalue problems: theory, algorithms and applications. In: Drmač, Z., Marušić, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, Brijuni (Croatia), June 23-27, 2003, pp. 3–39. Springer-Verlag (2005)
Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Software 39(2), 7:1–7:28 (2013). Also available from http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html.
D′yakonov, E.G.: Optimization in Solving Elliptic Problems. CRC Press, Boca Raton (1996)
Fan, H.-Y., Lin, W.-W., Van Dooren, P.: Normwise scaling of second order polynomial matrices. SIAM J. Matrix Anal. Appl. 26(1), 252–256 (2004)
Gohberg, I., Lancaster, P., Rodman, L.: Matrices and indefinite scalar products. Operator Theory: Advances and Applications, vol. 8. Birkhäuser Verlag, Basel (1983)
Hansen, P.C., Yalamov, P.Y.: Symmetric rank revealing factorizations. In: Recent Advances in Numerical Methods and Applications, II (Sofia, 1998), pp. 687–695. World Sci. Publ., River Edge (1999)
Hari, V., Singer, S., Singer, S.: Block-oriented J-Jacobi methods for Hermitian matrices. Linear Algebra Appl. 433(8–10), 1491–1512 (2010)
Hetmaniuk, U., Lehoucq, R.: Basis selection in LOBPCG. J. Comput. Phys. 218(1), 324–332 (2006)
Higham, N.J., Tisseur, F., Van Dooren, P.: Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351/352, 455–474 (2002)
Knyazev, A.V.: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)
Knyazev, A.V., Neymeyr, K.: Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electron. Trans. Numer. Anal. 15, 38–55 (2003)
Knyazev, A.V., Neymeyr, K.: A geometric theory for preconditioned inverse iteration. III: a short and sharp convergence estimate for generalized eigenvalue problems. Linear Algebra Appl. 358, 95–114 (2003)
Knyazev, A.V., Neymeyr, K.: Gradient flow approach to geometric convergence analysis of preconditioned eigensolvers. SIAM J. Matrix Anal. Appl. 31(2), 621–628 (2009)
Kovač-Striko, J., Veselić, K.: Trace minimization and definiteness of symmetric pencils. Linear Algebra Appl. 216, 139–158 (1995)
Lancaster, P., Rodman, L.: Canonical forms for Hermitian matrix pairs under strict equivalence and congurence. SIAM Rev. 47(3), 407–443 (2005)
Lancaster, P., Ye, Q.: Variational and numerical methods for symmetric matrix pencils. Bull. Austral. Math. Soc. 43(1), 1–17 (1991)
Lashuk, I., Argentati, M., Ovtchinnikov, E., Knyazev, A.: Preconditioned eigensolver LOBPCG in hypre and PETSc. In: Widlund, O., Keyes, D. (eds.) Domain Decomposition Methods in Science and Engineering XVI, vol. 55 , pp. 635–642. Lecture Notes Computation Science Engineering, (2007)
Liang, X., Li, R.-C., Bai, Z.: Trace minimization principles for positive semi-definite pencils. Linear Algebra Appl. 438(7), 3085–3106 (2013)
Mathias, R.: Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM J. Matrix Anal. Appl. 19(2), 541–550 (1998)
Miloloža Pandur, M.: Some iterative methods for solving the symmetric generalized eigenvelue problem. PhD thesis, Department of Mathematics, University of Zagreb, in preparation
Neymeyr, K.: A geometric theory for preconditioned inverse iteration. I: extrema of the Rayleigh quotient. Linear Algebra Appl. 322(1–3), 61–85 (2001)
Neymeyr, K.: A geometric theory for preconditioned inverse iteration. II: convergence estimates. Linear Algebra Appl. 322(1–3), 87–104 (2001)
Neymeyr, K.: A geometric theory for preconditioned inverse iteration applied to a subspace. Math. Comp. 71(237), 197–216 (2002)
Neymeyr, K.: A geometric convergence theory for the preconditioned steepest descent iteration. SIAM Numer. Anal. 50(6), 3188–3207 (2012)
Neymeyr, K., Ovtchinnikov, E., Zhou, M.: Convergence analysis of gradient iterations for the symmetric eigenvalue problem. SIAM J. Matrix Anal. Appl. 32(2), 443–456 (2011)
Parlett, B.N.: The Symmetric Eigenvalue Problem, Classics in Applied Mathematics, vol. 20. Corrected reprint of the 1980 original. SIAM, Philadelphia (1998)
Stewart, G.W.: Basic decompositions. Matrix Algorithms, vol. I. SIAM, Philadelphia (1998)
Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic, New York (1990)
Truhar, N.: Relative Perturbation Theory for Matrix Spectral Decompositions. PhD thesis, Department of Mathematics, University of Zagreb (2000)
Veselić, K.: A Jacobi eigenreduction algorithm for definite matrix pairs. Numer. Math. 64(2), 241–269 (1993)
Veselić, K.: A mathematical introduction. Damped Oscillations of Linear Systems, vol. 2023. Lecture Notes in Mathematics.Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kressner, D., Pandur, M.M. & Shao, M. An indefinite variant of LOBPCG for definite matrix pencils. Numer Algor 66, 681–703 (2014). https://doi.org/10.1007/s11075-013-9754-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-013-9754-3