Abstract
Based on the preconditioned modified Hermitian and skew-Hermitian splitting (PMHSS) iteration method, we introduce a lopsided PMHSS (LPMHSS) iteration method for solving a broad class of complex symmetric linear systems. The convergence properties of the LPMHSS method are analyzed, which show that, under a loose restriction on parameter α, the iterative sequence produced by LPMHSS method is convergent to the unique solution of the linear system for any initial guess. Furthermore, we derive an upper bound for the spectral radius of the LPMHSS iteration matrix, and the quasi-optimal parameter α ⋆ which minimizes the above upper bound is also obtained. Both theoretical and numerical results indicate that the LPMHSS method outperforms the PMHSS method when the real part of the coefficient matrix is dominant.
Similar content being viewed by others
References
Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7(4), 197–218 (2000)
Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl 16(6), 447–479 (2009)
Bai, Z.-Z.: On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems. Computing 89, 171–197 (2010)
Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87(3–4), 93–111 (2010)
Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algoritm. 56(2), 297–317 (2011)
Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013)
Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26(3), 844–863 (2005)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14(4), 319–335 (2007)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl. 428(2–3), 413–440 (2008)
Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1–32 (2004)
Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J. Matrix Anal. Appl. 31(2), 360–374 (2009)
Benzi, M., Bertaccini, D.: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28(3), 598–618 (2008)
Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Tran. Numer. Anal. 18, 49–64 (2004)
Day, D., Heroux, M.A.: Solving complex-valued linear systems via equivalent real formulations. SIAM J. Sci. Comput 23(2), 480–498 (2001)
Freund, R.W.: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13(1), 425–448 (1992)
Guo, X.-X., Wang, S.: Modified HSS iteration methods for a class of non-Hermitian positive-definite linear systems. Appl. Math. Comput. 218(20), 10,122–10,128 (2012)
Li, L., Huang, T.-Z., Liu, X.-P.: Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numer. Linear Algebra Appl. 14(3), 217–235 (2007)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Salkuyeh, D.K., Behnejad, S.: Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems [Numer. Linear Algebra Appl. 14 (2007) 217–235]. Numer. Linear Algebra Appl. 19(5), 885–890 (2012)
Yang, A.-L., An, J., Wu, Y.-J.: A generalized preconditioned HSS method for non-Hermitian positive definite linear systems. Appl. Math. Comput. 216(6), 1715–1722 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, X., Yang, AL. & Wu, YJ. Lopsided PMHSS iteration method for a class of complex symmetric linear systems. Numer Algor 66, 555–568 (2014). https://doi.org/10.1007/s11075-013-9748-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-013-9748-1
Keywords
- Complex symmetric linear system
- Positive definite
- Lopsided PMHSS iteration
- Spectral radius
- Preconditioning
- Convergence analysis