Abstract
This work in mainly devoted to the study of polynomial sequences, not necessarily orthogonal, defined by integral powers of certain first order differential operators in deep connection to the classical polynomials of Hermite, Laguerre, Bessel and Jacobi. This connection is streamed from the canonical element of their dual sequences. Meanwhile new Rodrigues-type formulas for the Hermite and Bessel polynomials are achieved.
Similar content being viewed by others
References
Carlitz, L.: On arrays of numbers. Amer. J. Math. 54, 739–752 (1932)
Comtet, L.: Advanced combinatorics—the art of finite and infinite expansions. Kluwer, Dordrecht (1974)
Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. III. McGraw-Hill, NewYork, London, Toronto (1953)
Gould, H.W., Hopper, A.T.: Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29, 51–63 (1962)
Hsu, L.C., Shiue, P.J-S.: A unified approach to generalized Stirling numbers. Adv. Appl. Math. 20, 366–384 (1998)
Janjić, M.: Some classes of numbers and derivatives. J. Integer Seq. 12, Article 09.8.3 (2009)
Loureiro, A.F., Maroni, P., Yakubovich, S.: On a nonorthogonal polynomial sequence associated with Bessel operator. (arXiv:1104.4055v1). Proc. Amer. Math. Soc. (2012, to appear)
Maroni, P.: L’orthogonalité et les récurrencesde polynômes d’ordre supérieur à deux. Ann. Fac. Sci. Toulouse 10, 1–36 (1989)
Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Brezinski, C., et al. (eds.) Orthogonal Polynomials and their Applications. IMACS Ann. Comput. Appl. Math., vol. 9, pp. 95–130 (1991)
Maroni, P.: Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math. 48, 133–155 (1993)
Maroni, P.: Fonctions Eulériennes. Polynômes orthogonaux classiques. Techniques de l’Ingénieur, traité Généralités (Sciences Fondamentales), A 154, 1–30 (1994)
Maroni, P., Mejri, M.: Generalized Bernoulli polynomials revisited and some other Appell sequences. Georgian Math. J. 12(4), 697–716 (2005)
OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org (2011)
Sheffer, I.M.: Some properties of polynomial sets of type zero. Duke Math. J. 5(3), 590–622 (1939)
Toscano, L.: Numeri di Stirling generalizzati, operatori differenziali e polinomi ipergeometrici. Pont. Acad. Sci. Comment. 3, 721–757 (1939) (Italian)
Toscano, L.: Sulla iterazione dell’operatore xD. Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl. 8(5), 337–350 (1949) (Italian)
Van Iseghem, J.: Vector orthogonal relations. Vector QD-algorithm. J. Comput. Appl. Math. 19(1), 141–150 (1987)
Yakubovich, S.: A class of polynomials and discrete transformations associated with the Kontorovich–Lebedev operators. Integral Transforms Spec. Funct. 20, 551–567 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Work of AFL supported by Fundação para a Ciência e Tecnologia via the grant SFRH/BPD/63114/2009. This research is partially funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese government through the FCT (Fundação para a Ciência e a Tecnologia) under the project PEst-C/MAT/UI0144/2011.
Rights and permissions
About this article
Cite this article
Loureiro, A.F., Maroni, P. Polynomial sequences associated with the classical linear functionals. Numer Algor 60, 297–314 (2012). https://doi.org/10.1007/s11075-012-9573-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9573-y