Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A stepsize control algorithm for SDEs with small noise based on stochastic Runge–Kutta Maruyama methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A variable stepsize control algorithm for solution of stochastic differential equations (SDEs) with a small noise parameter ε is presented. In order to determine the optimal stepsize for each stage of the algorithm, an estimate of the global error is introduced based on the local error of the Stochastic Runge–Kutta Maruyama (SRKM) methods. Based on the relation of the stepsize and the small noise parameter, the local mean-square stochastic convergence order can be different from stage to stage. Using this relation, a strategy for producing and controlling the stepsize in the numerical integration of SDEs is proposed. Numerical experiments on several standard SDEs with small noise are presented to illustrate the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcock, J., Burrage, K.: A note on the Balanced method. BIT Numer. Math. 46(4), 689–710 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bastani, A.F., Hosseini, S.M.: A new adaptive Runge-Kutta method for stochastic differential equations. J. Comput. Appl. Math. 206, 631–644 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastani, A.F., Hosseini, S.M.: On mean-square stability properties of a new adaptive stochastic Runge-Kutta method. J. Comput. Appl. Math. 224, 556–564 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckwar, E., Winkler, R.: Multistep methods for SDEs and their applicationto problem with small noise. SIAM J. Numer. Anal. 44(2), 779–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckwar, E., Rößler, A., Winkler, R.: Stochastic Runge–Kutta Methods for \(It\hat{o}\) SODEs with small noise. SIAM J. Sci. Comput. 32(4), 1789–1808 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckwar, E., Riedler, M.G.: Runge–Kutta methods for jump diffusion differential equation. J. Comput. Appl. Math. 236(6), 1155–1182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burrage. P.M.: Runge–Kutta methods for stochastic differential equations. PhD thesis, University of Queensland, Australia (1999)

  8. Burrage, P.M., Burrage, K.: A variable stepsize implementation for stochastic differential equations. SIAM J. Sci. Comput. 24(3), 848–864 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burrage, P.M., Herdiana, R., Burrage, K.: Adaptive stepsize based on control theory for stochastic differential equations. J. Comput. Appl. Math. 170(2), 317–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  11. Denk, G., Winkler, R.: Modeling and simulation of transient noise in circuit simulation. Math. Comput. Model. Dyn. Syst. 13, 383–394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faisal, A.A., White, J.A., Laughlin, S.B.: Ion channel noise places limits to the miniaturization of the brains wiring. Curr. Biol. 15, 1143–1149 (2005)

    Article  Google Scholar 

  13. Gaines, J.G., Lyons, T.J.: Variable stepsize control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)

    MATH  Google Scholar 

  15. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  16. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)

    Google Scholar 

  17. Küpper, D., Lehn, J., Rößler, A.: A stepsize control algorithm for the weak approximation of stochastic differential equations. Numer. Algorithms 44, 335–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lamba, H.: An adaptive timestepping algorithm for stochastic differential equations. J. Comput. Appl. Math. 161(2), 417–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mauthner, S.: Stepsize control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100, 93–109 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milstein, G.N., Tretyakov, M.V.: Mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28(2), 1067–1087 (1997)

    Article  Google Scholar 

  21. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    MATH  Google Scholar 

  22. Rößler, A.: An adaptive discretization algorithm for the weak approximation of stochastic differential equations. Proc. Appl. Math. Mech. 4(1), 19–22 (2004)

    Article  Google Scholar 

  23. Römisch, W., Winkler, R.: Stepsize control for mean-squar numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28(2), 604–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sickenberger, T.: Efficient Transient Noise Analysis in Circuit Simulation. Logos-Verlag, Berlin (2008)

    Google Scholar 

  25. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Software 29, 1–26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Söderlind, G.: Time-step algorithms: adaptivity, control and signal processing. Appl. Numer. Math. 56, 488–502 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Szepessy, A., Tempone, R., Zouraris, G.: Adaptive weak approximation of stochastic differential equations. Commun. Pure Appl. Math. 54(10), 1169–1214 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Winkler, R.: Stochastic differential algebraic equations of index 1 and applications in circuit simulation. J. Comput. Appl. Math. 157, 477–505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Valinejad, A., Hosseini, S.M.: A variable step-size control algorithm for the weak approximation of Stochastic differential equations. J. Numer. Algor. 55, 429–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Valinejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valinejad, A., Hosseini, S.M. A stepsize control algorithm for SDEs with small noise based on stochastic Runge–Kutta Maruyama methods. Numer Algor 61, 479–498 (2012). https://doi.org/10.1007/s11075-012-9544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9544-3

Keywords

Navigation