Abstract
In this paper, we study the semilocal convergence for a sixth-order variant of the Jarratt method for solving nonlinear equations in Banach spaces. The semilocal convergence of this method is established by using recurrence relations. We derive the recurrence relations for the method, and then prove an existence-uniqueness theorem, along with a priori error bounds which demonstrates the R-order of the method. Finally, we give some numerical applications to demonstrate our approach.
Similar content being viewed by others
References
Ahmad, F., Hussain, S., Mir, N.A., Rafiq, A.: New sixth order jarratt method for solving nonlinear equations. Int. J. Appl. Math. Mech 5(5), 27–35 (2009)
Argyros, I.K., Hilout, S.: A convergence analysis for directional two-step Newton methods. Numer. Algor. 55(4), 503–528 (2010)
Babajee, D.K.R., Dauhoo, M.Z.: Spectral analysis of the errors of some families of multi-step Newton-like methods. Numer. Algor. 52(1), 25–46 (2009)
Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44(2), 169–184 (1990)
Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45(4), 355–367 (1990)
Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 190(2), 1432–1437 (2007)
Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227–236 (2000)
Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49(2), 325–342 (2009)
Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36(7), 1–8 (1998)
Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3–4), 433–445 (2001)
Hernandez, M.A., Salanova, M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29–40 (1999)
Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20(95), 434–437 (1966)
Kou, J., Li, Y.: An improvement of the Jarratt method. Appl. Math. Comput. 189(2), 1816–1821 (2007)
Parhi, S.K., Gupta, D.K.: Semilocal convergence of a stirling-like method in banach spaces. Int. J. Comput. Methods 7(02), 215–228 (2010)
Parida, P.K., Gupta, D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206(2), 873–887 (2007)
Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Robert E. Krieger, New York (1979)
Ren, H., Wu, Q., Bi, W.: New variants of Jarratt’s method with sixth-order convergence. Numer. Algor. 52(4), 585–603 (2009)
Wang, X., Gu, C., Kou, J.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algor. doi:10.1007/s11075-010-9401-1 (2010)
Wang, X., Kou, J., Li, Y.: A variant of Jarratt method with sixth-order convergence. Appl. Math. Comput. 204(1), 14–19 (2008)
Wang, X., Kou, J., Li, Y.: Modified Jarratt method with sixth-order convergence. Appl. Math. Lett. 22(12), 1798–1802 (2009)
Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Hölder condition of the second derivative. J. Comput. Appl. Math. 194(2), 294–308 (2006)
Ye, X., Li, C., Shen, W.: Convergence of the variants of the Chebyshev-Halley iteration family under the Hölder condition of the first derivative. J. Comput. Appl. Math. 203(1), 279–288 (2007)
Zhao, Y., Wu, Q.: Newton-Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space. Appl. Math. Comput. 202(1), 243–251 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, X., Kou, J. & Gu, C. Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer Algor 57, 441–456 (2011). https://doi.org/10.1007/s11075-010-9438-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-010-9438-1