Abstract
We describe a fast solver for linear systems with reconstructible Cauchy-like structure, which requires O(rn 2) floating point operations and O(rn) memory locations, where n is the size of the matrix and r its displacement rank. The solver is based on the application of the generalized Schur algorithm to a suitable augmented matrix, under some assumptions on the knots of the Cauchy-like matrix. It includes various pivoting strategies, already discussed in the literature, and a new algorithm, which only requires reconstructibility. We have developed a software package, written in Matlab and C-MEX, which provides a robust implementation of the above method. Our package also includes solvers for Toeplitz(+Hankel)-like and Vandermonde-like linear systems, as these structures can be reduced to Cauchy-like by fast and stable transforms. Numerical experiments demonstrate the effectiveness of the software.
Similar content being viewed by others
References
Ammar, G.S., Gragg, W.B.: Superfast solution of real positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 9(1), 61–76 (1988)
Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992)
Aricò, A., Rodriguez, G.: toms729gw: a Matlab (Fortran) MEX Gateway for TOMS Algorithm 729, by P. C. Hansen and T. Chan. University of Cagliari (2008). Available at: http://bugs.unica.it/~gppe/soft/
Arushanian, O.B., Samarin, M.K., Voevodin, V.V., Tyrtyshnikov, E., Garbow, B.S., Boyle, J.M., Cowell, W.R., Dritz, K.W.: The TOEPLITZ Package Users’ Guide. Technical Report ANL-83-16, Argonne National Laboratory (1983)
Bartels, R.H., Golub, G.H., Saunders, M.A.: Numerical techniques in mathematical programming. In: Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970), pp. 123–176. Academic, New York (1970)
Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial gcd based on structured matrix computations. In: Bini, D.A., Mehrmann, V., Olshevsky, V., Tyrtyshnikov, E., Van Barel, M. (eds.) Numerical Methods for Structured Matrices and Applications: The Georg Heinig Memorial Volume. Operator Theory: Advances and Applications, vol. 199, pp. 155–173. Birkhäuser, Basel (2010)
Björck, Å.: Pivoting and stability in the augmented system method. In: Numerical Analysis 1991 (Dundee, 1991). Pitman Res. Notes Math. Ser., vol. 260, pp. 1–16. Longman Sci. Tech., Harlow (1992)
Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28(2), 135–151 (2002)
Calvetti, D., Reichel, L.: Factorizations of Cauchy matrices. J. Comput. Appl. Math. 86(1), 103–123 (1997)
Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247–1266 (2007)
Chun, J., Kailath, T.: Divide-and-conquer solutions of least-squares problems for matrices with displacement structure. SIAM J. Matrix Anal. Appl. 12(1), 128–145 (1991)
Codevico, G., Heinig, G., Van Barel, M.: A superfast solver for real symmetric Toeplitz systems using real trigonometric transformations. Numer. Linear Algebra Appl. 12(8), 699–713 (2005)
Friedlander, B., Morf, M., Kailath, T., Ljung, L.: New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices. Linear Algebra Appl. 27, 31–60 (1979)
Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64(212), 1557–1576 (1995)
Graillat, S., Ménissier-Morain, V.: Error-free transformations in real and complex floating point arithmetic. In: Proceedings of the International Symposium on Nonlinear Theory and its Applications, pp. 341–344. Vancouver, Canada (2007)
Gu, M.: Stable and efficient algorithms for structured systems of linear equations. SIAM J. Matrix Anal. Appl. 19(2), 279–306 (1998)
Hansen, P.C., Chan, T.F.: Fortran subroutines for general Toeplitz systems. ACM Trans. Math. Softw. 18(3), 256–273 (1992)
Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Linear Algebra for Signal Processing (Minneapolis, MN, 1992). IMA Vol. Math. Appl., vol. 69, pp. 63–81. Springer, New York (1995)
Heinig, G., Bojanczyk, A.: Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. I. Transformations. Linear Algebra Appl. 254, 193–226 (1997)
Heinig, G., Bojanczyk, A.: Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. II. Algorithms. Linear Algebra Appl. 278(1–3), 11–36 (1998)
Heinig, G., Rost, K.: Algebraic Methods for Toeplitz-Like Matrices and Operators. Operator Theory: Advances and Applications, vol. 13. Birkhäuser, Basel (1984)
Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)
Kahan, W.: Lecture notes on the status of IEEE standard 754 for binary floating-point arithmetic. Available at: http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF (1996)
Kailath, T., Chun, J.: Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl. 15(1), 114–128 (1994)
Kailath, T., Kung, S.Y., Morf, M.: Displacement ranks of matrices and linear equations. J. Math. Anal. Appl. 68(2), 395–407 (1979)
Kailath, T., Sayed, A.H.: Displacement structure: theory and applications. SIAM Rev. 37(3), 297–386 (1995)
Kailath, T., Sayed, A.H., (eds.): Fast Reliable Algorithms for Matrices with Structure. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA (1999)
Katholieke Universiteit Leuven, Department of Computer Science. MaSe-Team (Matrices having Structure) (2010). Available at: http://www.cs.kuleuven.ac.be/~marc/software/
The MathWorks, Natick. Matlab ver. 7.9 (2009)
van der Mee, C.V.M., Seatzu, S.: A method for generating infinite positive self-adjoint test matrices and Riesz bases. SIAM J. Matrix Anal. Appl. 26(4), 1132–1149 (2005)
Poloni, F.: A note on the O(n)-storage implementation of the GKO algorithm and its adaptation to Trummer-like matrices. Numer. Algorithms (2010). doi:10.1007/s11075-010-9361-5
Rodriguez, G.: Fast solution of Toeplitz- and Cauchy-like least-squares problems. SIAM J. Matrix Anal. Appl. 28(3), 724–748 (2006, electronic)
Siegel, I.H.: Deferment of computation in the method of least squares. Math. Comput. 19, 329–331 (1965)
Stewart, M.: A superfast Toeplitz solver with improved numerical stability. SIAM J. Matrix Anal. Appl. 25(3), 669–693 (2003, electronic)
Sweet, D.R., Brent, R.P.: Error analysis of a fast partial pivoting method for structured matrices. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, vol. 2563, pp. 266–280. SPIE, San Diego (1995)
University of Pisa, Department of Mathematics. Structured matrix analysis: numerical methods and applications (2010). Available at: http://bezout.dm.unipi.it/
Van Barel, M., Heinig, G., Kravanja, P.: A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J. Matrix Anal. Appl. 23(2), 494–510 (2001, electronic)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by MIUR, under the PRIN grant no. 20083KLJEZ-003, and by INdAM-GNCS.
Rights and permissions
About this article
Cite this article
Aricò, A., Rodriguez, G. A fast solver for linear systems with displacement structure. Numer Algor 55, 529–556 (2010). https://doi.org/10.1007/s11075-010-9421-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-010-9421-x