Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A fast solver for linear systems with displacement structure

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe a fast solver for linear systems with reconstructible Cauchy-like structure, which requires O(rn 2) floating point operations and O(rn) memory locations, where n is the size of the matrix and r its displacement rank. The solver is based on the application of the generalized Schur algorithm to a suitable augmented matrix, under some assumptions on the knots of the Cauchy-like matrix. It includes various pivoting strategies, already discussed in the literature, and a new algorithm, which only requires reconstructibility. We have developed a software package, written in Matlab and C-MEX, which provides a robust implementation of the above method. Our package also includes solvers for Toeplitz(+Hankel)-like and Vandermonde-like linear systems, as these structures can be reduced to Cauchy-like by fast and stable transforms. Numerical experiments demonstrate the effectiveness of the software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, G.S., Gragg, W.B.: Superfast solution of real positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 9(1), 61–76 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  3. Aricò, A., Rodriguez, G.: toms729gw: a Matlab (Fortran) MEX Gateway for TOMS Algorithm 729, by P. C. Hansen and T. Chan. University of Cagliari (2008). Available at: http://bugs.unica.it/~gppe/soft/

  4. Arushanian, O.B., Samarin, M.K., Voevodin, V.V., Tyrtyshnikov, E., Garbow, B.S., Boyle, J.M., Cowell, W.R., Dritz, K.W.: The TOEPLITZ Package Users’ Guide. Technical Report ANL-83-16, Argonne National Laboratory (1983)

  5. Bartels, R.H., Golub, G.H., Saunders, M.A.: Numerical techniques in mathematical programming. In: Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970), pp. 123–176. Academic, New York (1970)

    Google Scholar 

  6. Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial gcd based on structured matrix computations. In: Bini, D.A., Mehrmann, V., Olshevsky, V., Tyrtyshnikov, E., Van Barel, M. (eds.) Numerical Methods for Structured Matrices and Applications: The Georg Heinig Memorial Volume. Operator Theory: Advances and Applications, vol. 199, pp. 155–173. Birkhäuser, Basel (2010)

    Google Scholar 

  7. Björck, Å.: Pivoting and stability in the augmented system method. In: Numerical Analysis 1991 (Dundee, 1991). Pitman Res. Notes Math. Ser., vol. 260, pp. 1–16. Longman Sci. Tech., Harlow (1992)

    Google Scholar 

  8. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28(2), 135–151 (2002)

    Article  Google Scholar 

  9. Calvetti, D., Reichel, L.: Factorizations of Cauchy matrices. J. Comput. Appl. Math. 86(1), 103–123 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247–1266 (2007)

    Article  MathSciNet  Google Scholar 

  11. Chun, J., Kailath, T.: Divide-and-conquer solutions of least-squares problems for matrices with displacement structure. SIAM J. Matrix Anal. Appl. 12(1), 128–145 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Codevico, G., Heinig, G., Van Barel, M.: A superfast solver for real symmetric Toeplitz systems using real trigonometric transformations. Numer. Linear Algebra Appl. 12(8), 699–713 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedlander, B., Morf, M., Kailath, T., Ljung, L.: New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices. Linear Algebra Appl. 27, 31–60 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64(212), 1557–1576 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Graillat, S., Ménissier-Morain, V.: Error-free transformations in real and complex floating point arithmetic. In: Proceedings of the International Symposium on Nonlinear Theory and its Applications, pp. 341–344. Vancouver, Canada (2007)

    Google Scholar 

  16. Gu, M.: Stable and efficient algorithms for structured systems of linear equations. SIAM J. Matrix Anal. Appl. 19(2), 279–306 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hansen, P.C., Chan, T.F.: Fortran subroutines for general Toeplitz systems. ACM Trans. Math. Softw. 18(3), 256–273 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Linear Algebra for Signal Processing (Minneapolis, MN, 1992). IMA Vol. Math. Appl., vol. 69, pp. 63–81. Springer, New York (1995)

    Google Scholar 

  19. Heinig, G., Bojanczyk, A.: Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. I. Transformations. Linear Algebra Appl. 254, 193–226 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heinig, G., Bojanczyk, A.: Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. II. Algorithms. Linear Algebra Appl. 278(1–3), 11–36 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heinig, G., Rost, K.: Algebraic Methods for Toeplitz-Like Matrices and Operators. Operator Theory: Advances and Applications, vol. 13. Birkhäuser, Basel (1984)

    Google Scholar 

  22. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  23. Kahan, W.: Lecture notes on the status of IEEE standard 754 for binary floating-point arithmetic. Available at: http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF (1996)

  24. Kailath, T., Chun, J.: Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl. 15(1), 114–128 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kailath, T., Kung, S.Y., Morf, M.: Displacement ranks of matrices and linear equations. J. Math. Anal. Appl. 68(2), 395–407 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kailath, T., Sayed, A.H.: Displacement structure: theory and applications. SIAM Rev. 37(3), 297–386 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kailath, T., Sayed, A.H., (eds.): Fast Reliable Algorithms for Matrices with Structure. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA (1999)

  28. Katholieke Universiteit Leuven, Department of Computer Science. MaSe-Team (Matrices having Structure) (2010). Available at: http://www.cs.kuleuven.ac.be/~marc/software/

  29. The MathWorks, Natick. Matlab ver. 7.9 (2009)

  30. van der Mee, C.V.M., Seatzu, S.: A method for generating infinite positive self-adjoint test matrices and Riesz bases. SIAM J. Matrix Anal. Appl. 26(4), 1132–1149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Poloni, F.: A note on the O(n)-storage implementation of the GKO algorithm and its adaptation to Trummer-like matrices. Numer. Algorithms (2010). doi:10.1007/s11075-010-9361-5

  32. Rodriguez, G.: Fast solution of Toeplitz- and Cauchy-like least-squares problems. SIAM J. Matrix Anal. Appl. 28(3), 724–748 (2006, electronic)

    Article  MATH  MathSciNet  Google Scholar 

  33. Siegel, I.H.: Deferment of computation in the method of least squares. Math. Comput. 19, 329–331 (1965)

    MATH  Google Scholar 

  34. Stewart, M.: A superfast Toeplitz solver with improved numerical stability. SIAM J. Matrix Anal. Appl. 25(3), 669–693 (2003, electronic)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sweet, D.R., Brent, R.P.: Error analysis of a fast partial pivoting method for structured matrices. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, vol. 2563, pp. 266–280. SPIE, San Diego (1995)

    Google Scholar 

  36. University of Pisa, Department of Mathematics. Structured matrix analysis: numerical methods and applications (2010). Available at: http://bezout.dm.unipi.it/

  37. Van Barel, M., Heinig, G., Kravanja, P.: A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J. Matrix Anal. Appl. 23(2), 494–510 (2001, electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rodriguez.

Additional information

This work was partially supported by MIUR, under the PRIN grant no. 20083KLJEZ-003, and by INdAM-GNCS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aricò, A., Rodriguez, G. A fast solver for linear systems with displacement structure. Numer Algor 55, 529–556 (2010). https://doi.org/10.1007/s11075-010-9421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9421-x

Keywords

Navigation