Abstract
Cascadic multilevel methods for the solution of linear discrete ill-posed problems with noise-reducing restriction and prolongation operators recently have been developed for the restoration of blur- and noise-contaminated images. This is a particular ill-posed problem. The multilevel methods were found to determine accurate restorations with fairly little computational work. This paper describes noise-reducing multilevel methods for the solution of general linear discrete ill-posed problems.
Similar content being viewed by others
References
Baart, M.L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)
Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques for ill-conditioned linear systems. Numer. Math. 94, 203–228 (2003)
Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49, 85–104 (2008)
Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms (2009, in press)
Buades, A., Coll, B., Morel, J.M.: The staircasing effect in neighborhood filters and its solution. IEEE Trans. Image Process. 15, 1499–1505 (2006)
Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)
Calvetti, D., Lewis, B., Reichel, L.: On the regularizing properties of the GMRES method. Numer. Math. 91, 605–625 (2002)
Calvetti, D., Lewis, B., Reichel, L.: On the choice of subspace for iterative methods for linear discrete ill-posed problems. Int. J. Appl. Math. Comput. Sci. 11, 1069–1092 (2001)
Calvetti, D., Reichel, L., Zhang, Q.: Conjugate gradient algorithms for symmetric inconsistent linear systems. In: Brown, J.D., Chu, M.T., Ellison, D.C., Plemmons, R.J. (eds.) Proceedings of the Cornelius Lanczos International Centenary Conference, pp. 267–272. SIAM, Philadelphia (1994)
Castellanos, J.L., Gómez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43, 359–373 (2002)
Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput. 28, 2248–2265 (2006)
Donatelli, M., Serra-Capizzano, S.: On the regularization power of multigrid-type algorithms. SIAM J. Sci. Comput. 27, 2053–2076 (2006)
Donatelli, M., Serra-Capizzano, S.: Filter factor analysis of an iterative multilevel regularizing method. Electron. Trans. Numer. Anal. 29, 163–177 (2008)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)
Gulliksson, M., Wedin, P.-Å.: Modifying the QR decomposition to constrained and weighted least-squares. SIAM J. Matrix Anal. 13, 1298–1313 (1992)
Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman, Essex (1995)
Hansen, P.C., Jensen, T.K., Rodriguez, G.: An adaptive pruning algorithm for the discrete L-curve criterion. J. Comput. Appl. Math. 198, 483–492 (2007)
Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1997)
Hansen, P.C.: Regularization tools, version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–294 (2007)
Morigi, S., Reichel, L., Sgallari, F.: Orthogonal projection regularization operators. Numer. Algorithms 44, 99–114 (2007)
Morigi, S., Reichel, L., Sgallari, F.: Cascadic multilevel methods for fast nonsymmetric blurand noise-removal (submitted for publication)
Morigi, S., Reichel, L., Sgallari, F., Shyshkov, A.: Cascadic multiresolution methods for image deblurring. SIAM Imaging J. Sci. 1, 51–74 (2008)
Nemirovskii, A.S.: The regularization properties of the adjoint gradient method in ill-posed problems. USSR Comput. Math. Math. Phys. 26(2), 7–16 (1986)
Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)
Reichel, L., Rodriguez, G., Seatzu, S.: Error estimates for large-scale ill-posed problems. Numer. Algorithms (2009, in press)
Reichel, L., Sadok, H.: A new L-curve for ill-posed problems. J. Comput. Appl. Math. 219, 493–508 (2008)
Reichel, L., Shyshkov, A.: Cascadic multilevel methods for ill-posed problems. J. Comput. Appl. Math. (2009, in press)
Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. (2009, in press)
Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 33, 2nd edn. SIAM, Philadelphia (2003)
Scherzer, O.: An iterative multi level algorithm for solving nonlinear ill-posed problems. Numer. Math. 80, 579–600 (1998)
Weickert, J., Romeny, B.M.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morigi, S., Reichel, L. & Sgallari, F. Noise-reducing cascadic multilevel methods for linear discrete ill-posed problems. Numer Algor 53, 1–22 (2010). https://doi.org/10.1007/s11075-009-9282-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-009-9282-3