Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Jacobi spectral Galerkin method for elliptic Neumann problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with fast spectral-Galerkin Jacobi algorithms for solving one- and two-dimensional elliptic equations with homogeneous and nonhomogeneous Neumann boundary conditions. The paper extends the algorithms proposed by Shen (SIAM J Sci Comput 15:1489–1505, 1994) and Auteri et al. (J Comput Phys 185:427–444, 2003), based on Legendre polynomials, to Jacobi polynomials \(P_{n}^{(\alpha,\beta)}(x)\) with arbitrary α and β. The key to the efficiency of our algorithms is to construct appropriate basis functions with zero slope at the endpoints, which lead to systems with sparse matrices for the discrete variational formulations. The direct solution algorithm developed for the homogeneous Neumann problem in two-dimensions relies upon a tensor product process. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auteri, F., Quartapelle, L.: Galerkin spectral method for the vorticity and stream function equations. J. Comput. Phys. 149, 306–332 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auteri, F., Parolini, N., Quartapelle, L.: Essential imposition of Neumann Galerkin-Legendre elliptic solvers. J. Comput. Phys. 185, 427–444 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardi, C., Maday, Y.: Approximations Spectrales Des Probl‘Emes Aux Limites Elliptiques. Springer-Verlag, Paris (1992)

    Google Scholar 

  4. Bialecki, B., Karageorghis, A.: Legendre Gauss spectral collocation for the Helmholtz equation on a rectangle. Numer. Algorithms 36, 203–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Mechanics. Springer-Verlag, New York (1988)

    Google Scholar 

  7. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)

    MATH  Google Scholar 

  8. Doha, E.H.: On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. J. Phys. A 35, 3467–3478 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Doha, E.H.: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A 37, 657–675 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doha, E.H., Abd-Elhameed, W.M.: Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. J. Comput. Appl. Math. 181, 24–45 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numer. Algorithms 42, 137–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of the integrated forms for second-order equations using ultraspherical polynomials. ANZIAM J. 48, 361–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Doha, E.H., Bhrawy, A.H.: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numer. Methods Partial Differ. Equ. (2008, in press)

  16. Fernandino, M., Dorao, C.A., Jakobsen, H.A.: Jacobi Galerkin spectral method for cylindrical and spherical geometries. Chem. Eng. Sci. 62, 6777–6783 (2007)

    Article  Google Scholar 

  17. Graham, A.: Kronecker Products and Matrix Calculus: with Applications. Ellis Horwood, Chichester (1981)

    MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  19. Guo, B.-Y., Wang, L.-I.: Jacobi interpolation approximations and their applications to singular differential equations. Adv. Comput. Math. 14, 227–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guo, B.-Y.: Jacobi spectral method for differential equations with rough asymptotic behaviors at infinity. Comput. Math. Appl. 46, 95–104 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heinrichs, W.: Improved condition number of spectral methods. Math. Comput. 53, 103–119 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Luke, Y.: The Special Functions and their Approximations. Academic, New York (1969)

    MATH  Google Scholar 

  23. Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  24. Shen, J.: Efficient spectral-Galerkin method I: direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shen, J.: Efficient spectral-Galerkin method II: direct solvers of second- and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Szegö, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Pub. 23, (1985)

  27. Voigt, R.G., Gottlieb, D., Hussaini, M.Y.: Spectral Methods for Partial Differential Equations. SIAM, Philadelphia (1984)

    MATH  Google Scholar 

  28. Watson, G.N.: A note on generalized hypergeometric series. Proc. Lond. Math. Soc. 23(2), xiii–xv (1925) (Records for 8 Nov. 1923)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doha, E.H., Bhrawy, A.H. & Abd-Elhameed, W.M. Jacobi spectral Galerkin method for elliptic Neumann problems. Numer Algor 50, 67–91 (2009). https://doi.org/10.1007/s11075-008-9216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9216-5

Keywords

Navigation