Abstract
Let p, n ∈ ℕ with 2p ≥ n + 2, and let I a be a polyharmonic spline of order p on the grid ℤ × aℤn which satisfies the interpolating conditions \(I_{a}\left( j,am\right) =d_{j}\left( am\right) \) for j ∈ ℤ, m ∈ ℤn where the functions d j : ℝn → ℝ and the parameter a > 0 are given. Let \(B_{s}\left( \mathbb{R}^{n}\right) \) be the set of all integrable functions f : ℝn → ℂ such that the integral
is finite. The main result states that for given \(\mathbb{\sigma}\geq0\) there exists a constant c>0 such that whenever \(d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,\) j ∈ ℤ, satisfy \(\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) \) for all j ∈ ℤ there exists a polyspline S : ℝn+1 → ℂ of order p on strips such that
for all y ∈ ℝn, t ∈ ℝ and all 0 < a ≤ 1.
Similar content being viewed by others
References
Aronszajn, N., Creese, T., Lipkin, L.: Polyharmonic Functions. Clarendon, Oxford (1983)
Bejancu, A., Kounchev, O., Render, H.: Cardinal interpolation with biharmonic polysplines on strips, curve and surface fitting (Saint Malo 2002), pp. 41–58. Mod. Methods Math., Nashboro, Brentwood, TN (2003)
Bejancu, A., Kounchev, O., Render, H.: Cardinal interpolation with periodic polysplines on strips. (to appear in Calcolo)
Buhmann, M.: Radial Basis Functions : Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)
Dyn, N.: Interpolation and approximation by radial and related functions. Approximation theory VI, vol. I (College Station, TX, 1989), pp. 211–234. Academic, Boston, MA (1989)
Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Pseudo-Differential Operators. Springer-Verlag, Berlin–Heidelberg–New York–Tokyo (1983)
Kounchev, O.: Optimal recovery of linear functionals of Peano type through data on manifolds. Comput. Math. Appl. 30(3–6), 335–351 (1995)
Kounchev, O.I.: Multivariate Polysplines. Applications to Numerical and Wavelet Analysis. Academic, London–San Diego (2001)
Kounchev, O., Render, H.: Wavelet analysis of cardinal L-splines and construction of multivariate prewavelets. In: Chui, C.K., et al. (eds.) Approximation Theory X. Wavelets, Splines, and Applications, pp. 333–353. Vanderbilt University Press, Nashville, TN. Innovations in Applied Mathematics (2002)
Kounchev, O., Render, H.: The approximation order of polysplines. Proc. Am. Math. Soc. 132, 455–461 (2004)
Kounchev, O., Render, H.: Polyharmonic splines on grids ℤ×aℤn and their limits. Math. Comp. 74, 1831–1841 (2005)
Kounchev, O., Render, H.: Cardinal interpolation with polysplines on annuli. J. Approx. Theory 137, 89–107 (2005)
Kounchev, O., Wilson, M.: Application of PDE methods to Visualization of Heart Data. In: Wilson, M.J., Martin, R.R. (eds.) Mathematics of Surfaces. Lecture Notes in Computer Science vol. 2768, pp. 377–391. Springer, Berlin Heidelberg New York (2003)
Liu, Y., Lu, G.: Simultaneous approximations for functions in Sobolev spaces by derivates of polyharmonic cardinal splines. J. Approx. Theory 101, 49–62 (1999)
Madych, W.R., Nelson, S.A.: Polyharmonic cardinal splines. J. Approx. Theory 60, 141–156 (1990)
Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70, 94–114 (1992)
Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. In: Chui, C.K., et al. (eds.) Approximation Theory VIII, vol. 1, pp. 491–514. Approximation and Interpolation. World Scientific, Singapore (1995)
Schoenberg, I.J.: Cardinal Spline Interpolation. SIAM, Philadelphia, PA (1973)
Schoenberg, I.J.: Cardinal interpolation and spline functions. J. Approx. Theory 2, 167–206 (1969)
Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kounchev, O., Render, H. Convergence of polyharmonic splines on semi-regular grids \(\mathbb{Z}{{\boldsymbol{\times}} \boldsymbol{a}} {\mathbb{Z}^{\it\boldsymbol{n}}}\) for \({\boldsymbol{a}\rightarrow\mathbf {0}}\) . Numer Algor 44, 255–272 (2007). https://doi.org/10.1007/s11075-007-9099-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-007-9099-x