Abstract
We show that the algorithm presented in an earlier paper by Studniarski (Numer. Math., 55:685–693, 1989) can be applied, after only a small modification, to approximate numerically Clarke’s subgradients of semismooth functions of two variables. Results of computational testing of this modified algorithm are also reported.
Similar content being viewed by others
References
Bagirov, A.M.: A method for minimizing convex functions based on continuous approximations to the subdifferential. Optim. Methods Softw. 9, 1–17 (1998)
Chaney, R.W.: Second-order necessary conditions in constrained semismooth optimization. SIAM J. Control Optim. 25, 1072–1081 (1987)
Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)
Hintermüller, M., Hinze, M.: A SQP-semismooth Newton-type algorithm applied to control of the instationary Navier–Stokes system subject to control constraints. SIAM J. Optim. 16, 1177–1200 (2006)
Hintermüller, M., Kovtunenko, V., Kunish, K.: Semismooth Newton methods for a class of unilaterally constrained variational problems. Adv. Math. Sci. Appl. 14, 513–535 (2004)
Hintermüller, M., Ulbrich, M.: A mesh-independence result for semismooth Newton methods. Math. Program. 101, 151–184 (2004)
Facchinei, F., Pang, J.-S.: Finite-dimensional Variational Inequalities and Complementarity Problems, vol 2. Springer, Berlin Heidelberg New York (2003)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)
Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2, 191–207 (1977)
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, New Jersey (1970)
Shor, N.Z.: Minimization Methods for Nondifferentiable Functions. Springer, Berlin Heidelberg New York (1985)
Studniarski, M.: An algorithm for calculating one subgradient of a convex function of two variables. Numer. Math. 55, 685–693 (1989)
Śmietański, M.J.: An approximate Newton method for non-smooth equations with finite max functions. Numer. Algorithms 41, 219–238 (2006)
Ulbrich, M.: Constrained optimal control of Navier–Stokes flow by semismooth Newton methods. Syst. Control. Lett. 48, 297–311 (2003)
Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805–842 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Studniarski, M., Rahmo, E.D. Approximating Clarke’s subgradients of semismooth functions by divided differences. Numer Algor 43, 385–392 (2006). https://doi.org/10.1007/s11075-007-9069-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-007-9069-3