Abstract
The present article summarizes the state of the art algorithms to compute the discrete Moreau envelope, and presents a new linear-time algorithm, named NEP for NonExpansive Proximal mapping. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms are performed. Worst-case time complexity, convergence results, and examples are included. The fast Moreau envelope algorithms first factor the Moreau envelope as several one-dimensional transforms and then reduce the brute force quadratic worst-case time complexity to linear time by using either the equivalence with Fast Legendre Transform algorithms, the computation of a lower envelope of parabolas, or, in the convex case, the non expansiveness of the proximal mapping.
Similar content being viewed by others
References
Attouch, H., Wets, R.J.-B.: A convergence theory for saddle functions. Trans. Am. Math. Soc. 280, 1–41 (1983)
Aurell, E., Gurbatov, S.-g. N., Simdyankin, S.-g.I.: Numerical proof of self-similarity in Burgers’ turbulence. Tech. Rep. http://arxiv.org/abs/patt-sol/9602005,arXiv.org (1996)
Bec, J., Frisch, U., Khanin, K.: Kicked Burger turbulence. J. Fluid Mech. 416, 239–267 (2000)
Bernard, F., Thibault, L.: Prox-regularity of functions and sets in Banach spaces. Set.-Valued Anal. 12, 25–47 (2004)
Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303, 1–14 (2005)
Bernard, F., Thibault, L.: Uniform prox-regularity of functions and epigraphs in Hilbert spaces. Nonlinear Anal. 60, 187–207 (2005)
Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: A family of variable metric proximal methods. Math. Program. 68, 15–47 (1995)
Brenier, Y.: Un algorithme rapide pour le calcul de transformées de Legendre–Fenchel discrètes. C. R. Acad. Sci. Paris Sér. I. Math. 308, 587–589 (1989)
Burke, J.V., Qian, M.: A variable metric proximal point algorithm for monotone operators. Tech. Rep., Department of Mathematics, University of Washington, Seattle, Washington; and Department of Mathematics, California State University, Fullerton, CA (1992)
Burke, J.V., Qian, M.: On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Tech. Rep., Department of Mathematics, University of Washington, Seattle, Washington; and Department of Mathematics, California State University, Fullerton, CA (1996)
Burke, J.V., Qian, M.: On the local super-linear convergence of a matrix secant implementation of the variable metric proximal point algorithm for monotone operators. Tech. Rep., Department of Mathematics, University of Washington, Seattle, Washington; and Department of Mathematics, California State University, Fullerton, CA (1998)
Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower-C 2 property. J. Convex Anal. 2, 117–144 (1995)
Cominetti, R.: Coupling the proximal point algorithm with approximation methods. J. Optim. Theory Appl. 95, 581–600 (1997)
Corrias, L.: Fast Legendre–Fenchel transform and applications to Hamilton–Jacobi equations and conservation laws. SIAM J. Numer. Anal. 33, 1534–1558 (1996)
Deniau, L.: Proposition d’un opérateur géométrique pour l’analyse et l’identification de signaux et images. PhD thesis, Université de Paris-Sud, Centre d’Orsay (Dec. 1997)
Deniau, L., Blanc-Talon, J.: Fractal analysis with Hausdorff distance under affine transformations, Tech. Rep., ETCA-CREA-SP (1995)
Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Math. Oper. Res. 18, 202–226 (1993)
Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions, Tech. Rep. TR2004-1963, Cornell Computing and Information Science (Sept. 2004)
Frisch, U., Bec, J.: Burgulence. In: Lesieur, A.M., David, F. (eds.) Les Houches 2000: New Trends in Turbulence, pp. 341–383. Springer EDP-Sciences, France (2001)
Frisch, U., Bec, J., Villone, B.: Singularities and the distribution of density in the Burgers/adhesion model. Physica D. 152–153, 620–635 (2001)
Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)
Gurbatov, S.N., Simdyankin, S.I., Aurell, E., Frisch, U., Tóth, G.: On the decay of Burgers turbulence. J. Fluid Mech. 344, 339–374 (1997)
Gurbatov, S.N., Troussov, A.V.: The decay of multiscale signals – deterministic model of the Burgers turbulence, Tech. Rep., arXiv.org (2000)
Hamdi, A.: A Moreau-Yosida regularization of a difference of two convex functions. Appl. Math. E.-Notes 5, 164–170 (2005) (electronic)
Hare, W.L., Sagastizabal, C.: Computing proximal points on nonconvex functions, Tech. Rep., Optimization Online Digest – June 2005 (2005)
Helluy, P.: Simulation numérique des écoulements multiphasiques : De la théorie aux applications, PhD thesis, Institut des Sciences de l’Ingenieur de Toulon et du Var, Laboratoire Modélisation Numérique et Couplages, BP 56, 83162 La Valette CEDEX, France Habilitation à Diriger des Recherches (Jan. 2005)
Hiriart-Urruty, J.B.: Lipschitz r-continuity of the approximate subdifferential of a convex function. Math. Scand. 47, 123–134 (1980)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms. In: Grundlehren der Mathematischen Wissenschaften, vol. 305–306 [Fundamental Principles of Mathematical Sciences] Springer, Berlin Heidelberg New York (1993) (Vol. I: Fundamentals, Vol. II: Advanced theory and bundle methods)
Hisakado, T., Okumura, K., Vukadinovic, V., Trajkovic, L.: Characterization of a simple communication network using Legendre transform. In: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 738–741 (May 2003)
Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994)
Koopen, B.: Contact of bodies in 2D-space: Implementing the Discrete Legendre Transform. AI Master’s thesis, Intelligent Autonomous Systems Group, University of Amsterdam (Feb. 2002)
Legras, B., Pisso, I., Berthet, G., Lefèvre, F.: Variability of the Lagrangian turbulent diffusion in the lower stratosphere. Atmos. Chem. Phys. 5, 1605–1622 (2005)
Lehdili, N., Moudafi, A.: Combining the proximal algorithm and Tikhonov regularization. Optimization 37, 239–252 (1996)
Lemaire, B.: The proximal algorithm. In: New Methods in Optimization and Their Industrial Uses (Pau/Paris, 1987) Internat, vol. 87, pp. 73–87. Schriftenreihe Numer. Math., Birkhäuser, Basel (1989)
Lemaréchal, C., Oustry, F.: Growth conditions and \(\mathcal{U}\)-Lagrangians. Set.-Valued Anal. 9, 123–129 (2001) (Wellposedness in optimization and related topics (Gargnano, 1999)
Lemaréchal, C., Oustry, F., Sagastizábal, C.: The \(\mathcal{U}\)-Lagrangian of a convex function. Trans. Am. Math. Soc. 352, 711–729 (2000)
Lemaréchal, C., Sagastizábal, C.: More than first-order developments of convex functions: primal-dual relations. J. Convex Anal. 3, 255–268 (1996)
Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau–Yosida regularization: theoretical preliminaries. SIAM J. Optim. 7, 367–385 (1997)
Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program. 76, 393–410 (1997)
Lucet, Y.: A fast computational algorithm for the Legendre–Fenchel transform. Comput. Optim. Appl. 6, 27–57 (1996)
Lucet, Y.: Faster than the Fast Legendre Transform, the Linear-time Legendre Transform. Numer. Algor. 16, 171–185 (1997)
Lucet, Y.: Fast Moreau envelope computation II: Applications. Tech. Rep., University of British Columbia, Okanagan (2005)
Lucet, Y.: A linear Euclidean distance transform algorithm based on the Linear-time Legendre Transform. In: Proceedings of the Second Canadian Conference on Computer and Robot Vision (CRV 2005), Victoria BC, May 2005. IEEE Computer Society Press, Los Alamitos, CA
Meng, F., Sun, D., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau–Yosida regularization. Math. Program. (2005) (online first)
Meng, F., Zhao, G.: On second-order properties of the Moreau–Yosida regularization for constrained nonsmooth convex programs. Numer. Funct. Anal. Optim. 25, 515–529 (2004)
Meng, F.W., Hao, Y.: Piecewise smoothness for Moreau–Yosida approximation to a piecewise C 2 convex function. Adv. Math. (China), 30, 354–358 (2001)
Mifflin, R.: A quasi-second-order proximal bundle algorithm. Math. Program. 73, 51–72 (1996)
Mifflin, R., Qi, L., Sun, D.: Properties of the Moreau-Yosida regularization of a piecewise C 2 convex function. Math. Program. 84, 269–281 (1999)
Mifflin, R., Sagastizábal, C.: \(\mathcal{VU}\)-decomposition derivatives for convex max-functions. In: Ill-posed Variational Problems and Regularization Techniques (Trier, 1998). Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 167–186. Springer, Berlin Heidelberg New York (1999)
Mifflin, R., Sagastizábal, C.: Functions with primal-dual gradient structure and \(\mathcal{U}\)-Hessians. In: Nonlinear Optimization and Related Topics (Erice, 1998). Applied Optimization, vol. 36, pp. 219–233. Kluwer, Dordrecht (2000)
Mifflin, R., Sagastizábal, C.: On \(\mathcal{VU}\)-theory for functions with primal-dual gradient structure. SIAM J. Optim. 11, 547–571 (2000) (electronic)
Mifflin, R., Sagastizábal, C.: Primal-dual gradient structured functions: second-order results; links to epi-derivatives and partly smooth functions. SIAM J. Optim. 13, 1174–1194 (2003) (electronic)
Mifflin, R., Sagastizábal, C.: On the relation between \(\mathcal{U}\)-Hessians and second-order epi-derivatives. Eur. J. Oper. Res. 157, 28–38 (2004)
Mifflin, R., Sagastizábal, C.: \(\mathcal{VU}\)-smoothness and proximal point results for some nonconvex functions. Optim. Methods Softw. 19, 463–478 (2004)
Mifflin, R., Sagastizábal, C.: Relating \(\mathcal{U}\)-Lagrangians to second-order epi-derivatives and proximal-tracks. J. Convex Anal. 12, 81–93 (2005)
Mifflin, R., Sagastizábal, C.: A \(\mathcal{VU}\)-algorithm for convex minimization. Math. Program. (2005)
Mifflin, R., Sun, D., Qi, L.: Quasi-Newton bundle-type methods for nondifferentiable convex optimization. SIAM J. Optim. 8, 583–603 (1998) (electronic)
Moreau, J.-J.: Propriétés des applications “prox”. C. R. Acad. Sci. Paris 256, 1069–1071 (1963)
Moreau, J.-J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)
Moreau, J.-J.: Convexity and duality. In: Functional Analysis and Optimization, pp. 145–169. Academic, New York (1966)
Moudafi, A.: Coupling proximal methods and variational convergence. Z. Oper. Res. 38, 269–280 (1993)
Moudafi, A.: Coupling proximal algorithm and Tikhonov method. Nonlinear Times Digest 1, 203–209 (1994)
Noullez, A., Gurbatov, S.N., Aurell, E., Simdyankin, S.I.: The global picture of self-similar and not self-similar decay in Burgers turbulence. Tech. Rep. nlin.CD/0409022, arXiv.org eprint archive, (Sept. 2004)
Noullez, A., Vergassola, M.: A fast Legendre transform algorithm and applications to the adhesion model. J. Sci. Comput. 9, 259–281 (1994)
Poliquin, R., Rockafellar, R.T.: Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6, 1121–1137 (1996)
Poliquin, R., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348, 1805–1838 (1996)
Qi, L.: Second-order analysis of the Moreau-Yosida regularization. In: Nonlinear analysis and convex analysis (Niigata, 1998), pp. 16–25. World Sci., River Edge, NJ (1999)
Qi, L., Chen, X.: A preconditioning proximal Newton method for nondifferentiable convex optimization. Math. Program. 76, 411–429 (1997)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NY (1970)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin Heidelberg New York (1998)
She, Z.-S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Comm. Math. Phys. 148, 623–641 (1992)
Spingarn, J.E.: Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim. 4, 123–150 (1981–1982)
Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17, 670–690 (1992)
Vergassola, M., Dubrulle, B., Frisch, U., Noullez, A.: Burger’s equation, devil’s staircases and the mass distribution function for large-scale structures. Astron. Astrophys. 289, 325–356 (1994)
Wei, Z., Qi, L.: Convergence analysis of a proximal Newton method. Numer. Funct. Anal. Optim. 17, 463–472 (1996)
Yosida, K.: Functional Analysis, Classics in Mathematics. Springer, Berlin Heidelberg New York (1995) (Reprint of the sixth (1980) edition)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lucet, Y. Fast Moreau envelope computation I: numerical algorithms. Numer Algor 43, 235–249 (2006). https://doi.org/10.1007/s11075-006-9056-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-006-9056-0
Keywords
- Moreau–Yosida approximate
- Legendre–Fenchel transform
- conjugate
- discrete Legendre transform
- computational convex analysis