Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Locally tensor product functions

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present in this paper a family of functions which are tensor product functions in subdomains, while not having the usual drawback of functions which are tensor product functions in the whole domain. With these functions we can add more points in some region without adding points on lines parallel to the axes. These functions are linear combinations of tensor product polynomial B-splines, and the knots of different B-splines are less connected together than with usual polynomial B-splines. Approximation of functions, or data, with such functions gives satisfactory results, as shown by numerical experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Apprato, Etude de la convergence du produit tensoriel de fonctions splines à une variable satisfaisant à des conditions d’interpolation de Lagrange, Ann. Fac. Sci. Toulouse VI (1984) 153–170.

    Google Scholar 

  2. D. Apprato, R. Arcangeli and R. Manzanilla, Sur la construction de surfaces de classe Ck à partir d’un grand nombre de données de Lagrange, Modél. Math. Anal. Numér. 21(4) (1987) 529–555.

    Google Scholar 

  3. W. Dahmen, R. De Vore and K. Scherer, Multi-dimensional spline approximation, SIAM J. Numer. Anal. 17(3) (1980) 380–402.

    Google Scholar 

  4. C. de Boor, A Practical Guide to Splines (Springer-Verlag, Heidelberg, 1978).

    Google Scholar 

  5. W. Light, Radial basic functions from the perspective of splines, in: Curve and Surface Fitting: Saint-Malo 2003, eds. A. Cohen, J.L. Merrien and L.L. Schumaker (2003) pp. 279–294.

  6. L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

AMS subject classification

41A15, 41A63, 65Dxx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabut, C. Locally tensor product functions. Numer Algor 39, 329–348 (2005). https://doi.org/10.1007/s11075-004-3646-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-3646-5

Keywords

Navigation