Abstract
We present in this paper a family of functions which are tensor product functions in subdomains, while not having the usual drawback of functions which are tensor product functions in the whole domain. With these functions we can add more points in some region without adding points on lines parallel to the axes. These functions are linear combinations of tensor product polynomial B-splines, and the knots of different B-splines are less connected together than with usual polynomial B-splines. Approximation of functions, or data, with such functions gives satisfactory results, as shown by numerical experimentation.
Similar content being viewed by others
References
D. Apprato, Etude de la convergence du produit tensoriel de fonctions splines à une variable satisfaisant à des conditions d’interpolation de Lagrange, Ann. Fac. Sci. Toulouse VI (1984) 153–170.
D. Apprato, R. Arcangeli and R. Manzanilla, Sur la construction de surfaces de classe Ck à partir d’un grand nombre de données de Lagrange, Modél. Math. Anal. Numér. 21(4) (1987) 529–555.
W. Dahmen, R. De Vore and K. Scherer, Multi-dimensional spline approximation, SIAM J. Numer. Anal. 17(3) (1980) 380–402.
C. de Boor, A Practical Guide to Splines (Springer-Verlag, Heidelberg, 1978).
W. Light, Radial basic functions from the perspective of splines, in: Curve and Surface Fitting: Saint-Malo 2003, eds. A. Cohen, J.L. Merrien and L.L. Schumaker (2003) pp. 279–294.
L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981).
Author information
Authors and Affiliations
Additional information
AMS subject classification
41A15, 41A63, 65Dxx
Rights and permissions
About this article
Cite this article
Rabut, C. Locally tensor product functions. Numer Algor 39, 329–348 (2005). https://doi.org/10.1007/s11075-004-3646-5
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11075-004-3646-5