Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fixed-Time Synchronization of Complex-Valued Memristor-Based Neural Networks with Impulsive Effects

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, the fixed-time synchronization of complex-valued memristor-based neural networks with impulsive effects is investigated. We first separate these complex-valued networks into real and imaginary parts, and design the appropriate controllers. Then apply the set-valued map and the differential inclusion theorem to handle the discontinuity problems at the right-hand side of the drive-response systems. By constructing the comparison systems together with the Lyapunov function, we get the fixed-time synchronization conditions. Moreover, the estimate of the settling time is also explicitly obtained. Finally, two examples and their numerical simulations are presented to show the effectiveness of the obtained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abdurahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28

    MATH  Google Scholar 

  2. Balasubramaniam P, Chandran R, Theesar SJS (2011) Synchronization of chaotic nonlinear continuous neural with time-varying delay. Cogn Neurodyn 5(4):361–371

    Google Scholar 

  3. Cao J, Li R (2017) Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci 60:1–15

    Google Scholar 

  4. Cao J, Lu J (2006) Adaptive synchronization of neural networks with or without time-varying delays. Chaos 16(1):013113

    MathSciNet  Google Scholar 

  5. Chen L, Wu R, Cao J, Liu J (2015) Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw 71:37–44

    MATH  Google Scholar 

  6. Chen C, Li L, Peng H, Yang Y (2017) Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay. Neural Netw 96:47–54

    MATH  Google Scholar 

  7. Chen C, Li L, Peng H, Kurths J, Yang Y (2018) Fixed-time synchronization of hybrid coupled networks with time-varying delays. Chaos, Solitons & Fractals 108:49–56

    MathSciNet  MATH  Google Scholar 

  8. Chua LO (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Google Scholar 

  9. Clarke FH (1990) Optimization and nonsmooth analysis. SIAM, Philadelphia

    MATH  Google Scholar 

  10. Corinto F, Ascoli A, Gilli M (2011) Nonlinear dynamics of memristor oscillators. IEEE Trans Circuits Syst I, Reg Papers 58(6):1323–1336

    MathSciNet  Google Scholar 

  11. Ding X, Cao J, Alsaedi A, Alsaadi FE, Hayat T (2017) Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Netw 90:42–55

    MATH  Google Scholar 

  12. Filippov AF, Arscott FM (2013) Differential equations with discontinuous righthand sides. Springer, Dordrecht

    Google Scholar 

  13. Guo R, Zhang Z, Chen J, Lin C, Liu Y (2018) Finite-time synchronization for delayed complex-valued BAM neural networks. CAC 29:179–193

    Google Scholar 

  14. Hardy G, Littlewood J, Polya G (1952) Inequalities. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Hirose A (1992) Dynamics of fully complex-valued neural networks. Electron Lett 28(16):1492–1494

    Google Scholar 

  16. Hu C, Yu J, Chen Z (2017) Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks. Neural Netw 89:74–83

    MATH  Google Scholar 

  17. Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural network. Int J Bifur Chaos Appl Sci Eng 19(11):3605–3656

    MATH  Google Scholar 

  18. Jankowski S, Lozowski A, Zurada J (1996) Complex-valued multistate neural associative memory. IEEE Trans Neural Netw 7(6):1491–1496

    Google Scholar 

  19. Lee D (2001) Relaxation of the stability condition of the complex-valued neural networks. IEEE Trans Neural Netw 12(5):1260–1262

    Google Scholar 

  20. Li N, Cao J (2016) Lag synchronization of memristor-based coupled neural networks via \(\omega \)-measure. IEEE Trans Neural Netw Learn Syst 27(3):169–182

    MathSciNet  Google Scholar 

  21. Li X, Song S (2017) Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans Autom Control 62(1):406–411

    MathSciNet  MATH  Google Scholar 

  22. Li X, Wu J (2018) Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay. IEEE Trans Autom Control 63(1):306–311

    MathSciNet  MATH  Google Scholar 

  23. Liu Y, Li B, Lu J, Cao J (2017) Pinning control for the disturbance decoupling problem of boolean networks. IEEE Trans Autom Control 62(12):6595–6601

    MathSciNet  MATH  Google Scholar 

  24. Liu D, Zhu S, Ye E (2017) Synchronization stability of memristor-based complex-valued neural networks with time delays. Neural Netw 96:115–127

    MATH  Google Scholar 

  25. Lu J, Daniel H, Cao J (2010) A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7):1215–1221

    MathSciNet  MATH  Google Scholar 

  26. Lu J, Daniel H, Cao J, Kurths J (2011) Exponential synchronization of linearly coupled neural networks with impulsive disturbances. IEEE Trans Neural Netw 22(2):329–336

    Google Scholar 

  27. Lu J, Kurths J, Cao J, Mahdavi N (2011) Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans Neural Netw Learn Syst 23(2):285–292

    Google Scholar 

  28. Lv X, Li X (2017) Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications. ISA Trans 70:30–36

    Google Scholar 

  29. Parlitz U, Chua LO, Kocarev L, Halle KS, Shang A (1992) Transmission of digital signala by chaotic synchronization. Int J Bifur Chaos Appl Sci Eng 2(4):973–977

    MATH  Google Scholar 

  30. Pecora L, Carroll T (1990) Synchronization in chaotic system. Phys Rev Lett 64(8):821–824

    MathSciNet  MATH  Google Scholar 

  31. Pershin YV, Ventra MD (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 5:881–886

    Google Scholar 

  32. Polyakov A (2012) Nonliner feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110

    MATH  Google Scholar 

  33. Rakkiyappan R, Velmurugan G, Cao J (2011) Stability analysis of memristor-based fractional-order neural networks with different memductance functions. Cogn Neurodyn 9(2):145–177

    Google Scholar 

  34. Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807

    MATH  Google Scholar 

  35. Shen J, Cao J (2011) Finite-time synchronization of coupled neural networks via discontinuous controllers. Cogn Neurodyn 5(4):372–385

    Google Scholar 

  36. Sing W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374

    Google Scholar 

  37. Song Q, Cao J (2010) Impulsive effects on stability of fuzzy Cohen-Crossberg neural networks with time-varying delays. IEEE Trand Syst Man Cybern Part B Cybern 37(3):672–680

    Google Scholar 

  38. Velmurugan G, Rakkiyappan R, Cao J (2016) Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw 73:36–46

    MATH  Google Scholar 

  39. Wan Y, Cao J, Wen G, Yu W (2016) Robust fixed-time synchronization of delayed Cohen-Grossburg neural netwoeks. Neural Netw 73:86–94

    MATH  Google Scholar 

  40. Wang Z, Huang L (2015) Global stability analysis for delayed complex-valued BAM neural networks. Neurocomputing 15(P3):2083–2089

    Google Scholar 

  41. Wang W, Li L, Peng H, Xiao J, Yang Y (2014) Synchronization control of memristor-based recurrent neural networks with perturbations. Neural Netw 53:8–14

    MATH  Google Scholar 

  42. Wei R, Cao J, Alsaedi A (2017) Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays. Cogn Neurodyn 12(1):121–134

    Google Scholar 

  43. Wen S, Bao G, Zeng Z, Chen Y, Huang T (2013) Global exponential synchronizatin of memristor-based recurrent neural networks with time-varying delays. Neural Netw 48:195–203

    MATH  Google Scholar 

  44. Wu E, Yang X, Xu C, Alsaadi FE, Hayat T (2018) Finite-time synchronization of complex-valued delayed neural networks with discontinuous activations. Asian J Control 20(6):2237–2247

    MathSciNet  MATH  Google Scholar 

  45. Yang X, Lu J (2016) Finite-time synchronization of coupled neural networks with Markovian topology and impulsive effects. IEEE Trans Autom Control 61(8):2256–2261

    MATH  Google Scholar 

  46. Yang X, Cao J, Lu J (2011) Synchronization of delayed complex dynamical networks with impulsive and stochastic effects. Nonlinear Anal Real Word Appl 12(4):2252–2266

    MathSciNet  MATH  Google Scholar 

  47. Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51(5):3486–3510

    MathSciNet  MATH  Google Scholar 

  48. Yang X, Yang Z, Nie X (2014) Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication. Commun Nonlinear Sci Numer Simul 19:1529–1543

    MathSciNet  MATH  Google Scholar 

  49. Yang X, Lam J, Ho DWC, Feng Z (2017) Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans Autom Control 62(11):5511–5521

    MathSciNet  MATH  Google Scholar 

  50. Yang X, Li C, Huang T, Song Q, Huang J (2018) Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delay. Chaos Solitons & Fractals 110:105–123

    MathSciNet  MATH  Google Scholar 

  51. Yu W, Cao J (2007) Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. Phys A 375(2):467–482

    Google Scholar 

  52. Zhang Y, Deng S (2019) Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay. Chaos Solitons & Fractals 128:176–190

    MathSciNet  Google Scholar 

  53. Zhang Y, Liu Y (2020) Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints. Appl Math Comput 364:124667

    MathSciNet  MATH  Google Scholar 

  54. Zhang W, Tang Y, Miao Q, Du W (2013) Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects. IEEE Trans Neural Netw Learn Syst 24(8):1316–1326

    Google Scholar 

  55. Zhang Y, Zhuang J, Xia Y, Bai Y, Cao J, Gu L (2019) Fixed-time synchronization of the impulsive memristor-based neural networks. Commun Nonlinear Sci Numer Simul 77:40–53

    MathSciNet  Google Scholar 

  56. Zhang W, Zou Z, Wang Y, Zhang Z (2019) Double-integrator dynamics for multiagent systems with antagonistic reciprocity. IEEE Trans on Cybern. https://doi.org/10.1109/TCYB.2019.2939487

    Article  Google Scholar 

  57. Zhou C, Zhang W, Yang X, Xu C, Feng J (2017) Finite-time synchronization of complex-valued neural networkd with mixed delays and uncertain perturbation. Neural Proc Lett 46(1):271–291

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 11771197 and 11971317), Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University, the Natural Science Foundation of Fujian Province of China (No. 2019J01064) and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfu Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Deng, S. Fixed-Time Synchronization of Complex-Valued Memristor-Based Neural Networks with Impulsive Effects. Neural Process Lett 52, 1263–1290 (2020). https://doi.org/10.1007/s11063-020-10304-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10304-w

Keywords

Mathematics Subject Classification

Navigation