Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quaternion Based Maximum Margin Criterion Method for Color Face Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Color is one of the basic features of images, which can provide very useful information and play an important role in face recognition. By using the quaternion matrix representation, the R, G, B information of each pixel is not destroyed and it can be taken as a organic body. Therefore, this paper proposes a quaternion based maximum margin criterion (QMMC) algorithm. Firstly, the quaternion number is used to denote the pixel of the color image, and a quaternion vector is taken to represent the color image. Secondly, the maximum margin criterion algorithm is used to project the quaternion vector in the high-dimension space into a low-dimension space. Finally, the nearest neighbor classification are taken for classification recognition. Numerous experiments show that the proposed QMMC can achieve better recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu T, Tao D (2016) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461

    Article  Google Scholar 

  2. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuit Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

  3. Liu T, Tao D (2015) On the performance of manhattan nonnegative matrix factorization. IEEE Trans Neural Netw Learn Syst 27(9):1851–1863. doi:10.1109/TNNLS.2015.2458986

    Article  MathSciNet  Google Scholar 

  4. Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43:4165–4176

    Article  MATH  Google Scholar 

  5. Tao D, Song M, Li X, Shen J (2008) Bayesian tensor approach for 3-D face modelling. IEEE Trans Circuit Syst Video Technol 18(10):1397–1410

    Article  Google Scholar 

  6. Xu Y, Li X, Yang J, Lai Z, Zhang David (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Cybern 44(10):1738–1746

    Article  Google Scholar 

  7. Xu C, Tao D, Xu C, Rui Y (2014) Large-margin weakly supervised dimensionality reduction. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp 865–873

  8. Yu J, Tao D et al (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybern 45(4):767–779

    Article  Google Scholar 

  9. Xu C, Tao D, Xu C (2014) Large-margin multi-view information bottleneck. IEEE Trans Pattern Anal Mach Intell 36(8):1559–1572

    Article  Google Scholar 

  10. Xu Y, Zhang D, Yang JY (2010) A feature extraction method for use with bimodal biometrics. Pattern Recognit 43(3):1106–1115

    Article  MATH  Google Scholar 

  11. Yu J, Rui Y et al (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  Google Scholar 

  12. Xu C, Tao D, Li Y, Xu C (2013) Large-margin multi-view Gaussian process for image classification. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, pp 7–12

  13. Yu J, Rui Y et al (2014) High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybern 44(12):2431–2442

    Article  Google Scholar 

  14. Suhre A, Kose K, Cetin AE, Gurcan MN (2011) Content-adaptive color transform for image compression. Opt Eng 50(5):057003

    Article  Google Scholar 

  15. Yuan Y, Zhang J, Chang B, Han Y (2011) Objective quality evaluation of visible and infrared color fusion image. Opt Eng 50(3):033202

    Article  Google Scholar 

  16. Torres L, Reutter J, Lorente L (1999) The importance of the color information in face recognition. In: Proceedings International Conference on Image Processing, vol. 3, pp 627–631

  17. Rajapakse M, Tan J, Rajapakse J (2004) Color channel encoding with NMF for face recognition. In: Proceedings of IEEE International Conference on Image Processing, pp 2007–2010

  18. Yang J, Liu C (2008) Color image discriminant models and algorithms for face recognition. IEEE Trans Neural Netw 19:2088–2098

    Article  Google Scholar 

  19. Liu C (2008) Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Trans Inf Forens Secur 3(2):213–222

    Article  Google Scholar 

  20. Wang C, Yin B, Bai X, Sun Y (2008) Color face recognition based on 2DPCA. In: Proceeding 19th International Conference on Pattern Recognition, pp 1–4

  21. Yang J, Liu C, Zhang L (2010) Color space normalization: enhancing the discriminating power of color space for face recognition. Pattern Recognit 43(4):1454–1466

    Article  MATH  Google Scholar 

  22. Wang SJ, Yang J (2012) Sparse tensor discriminant color space for face verification. IEEE Trans Neural Netw Learn Syst 23(6):876–887

    Article  Google Scholar 

  23. Villegas M, Paredes R, Juan A, Vidal E (2008) Face verification on color images using local features. In Proceeding IEEE Computer Society Conference Computer Vision Pattern Recognition Workshops, pp 1–6

  24. Hamilton WR (1866) Elements of quaternions. Longmans, Green and Co, London

    Google Scholar 

  25. Lang F, Zhou J, Yan B, Song E (2008) Obtain method of quaternion matrix orthogonal eigenvector set and its application in color face recognition. Acta Autom Sin 34(2):121–129 (in Chinese)

    Article  MATH  Google Scholar 

  26. Javier V, Palomar DP, Luis V, Ignacio S (2011) Quaternion ICA from second-order statistics. IEEE Trans Signal Process 59(4):1586–1600

    Article  Google Scholar 

  27. Li H, Jiang T (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165

    Article  Google Scholar 

  28. Tian Y (2000) Matrix theory over the complex quaternion algebra. ArXiv mathematics e-prints. http://arxiv.org/abs/math/0004005

  29. Xu Y (2012) Quaternion-based discriminant analysis method for color face recognition. PLOS One 7(8):e43493

    Article  MathSciNet  Google Scholar 

  30. Martinez A, Benavente R (1998) The AR face database. In: Technical Report 24, Centre de Visio per Computador, Univ. Purdue, West Lafayette

Download references

Acknowledgments

This work was partly supported by NSFC of China (U1504610, 61402274, 61672333), the Natural Science Foundations of Henan Province (14A413013, 142102210584, 13B520992), the Natural Science Foundations of Luoyang (1401036A), The Development Foundations of Henan University of Science and Technology (2014ZCX013), the Key Science and Technology Program of Shaanxi Province (No.2016GY-081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qiu, Y., Peng, Y. et al. Quaternion Based Maximum Margin Criterion Method for Color Face Recognition. Neural Process Lett 45, 913–923 (2017). https://doi.org/10.1007/s11063-016-9550-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9550-x

Keywords

Navigation