Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Novel Adaptive NARMA-L2 Controller Based on Online Support Vector Regression for Nonlinear Systems

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this study, a novel nonlinear autoregressive moving average (NARMA)-L2 controller based on online support vector regression (SVR) is proposed. The main idea is to obtain a SVR based NARMA-L2 model of a nonlinear single input single output system (SISO) by decomposing a single SVR which estimates the nonlinear autoregressive with exogenous inputs (NARX) model of the system. Consequently, using the obtained SVR-NARMA-L2 submodels, a NARMA-L2 controller is designed. The performance of the proposed SVR based NARMA-L2 controller has been evaluated by simulations carried out on a bioreactor system, and the results show that the SVR based NARMA-L2 model and controller attain good modelling and control performances. Robustness of the controller in the case of system parameter uncertainty and measurement noise have also been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Narendra KS, Mukhopadhyay S (1997) Adaptive control using neural networks and approximate models. IEEE Trans Neural Netw 8(3):475–485. doi:10.1109/72.572089

    Article  Google Scholar 

  2. Majstorovic M, Nikolic I, Radovic J, Kvascev G (2008) Neural network control approach for a two-tank system. In: 9th Symposium on neural network applications in electrical engineering (NEUREL 2008), Belgrade, Serbia

  3. Pedro JO, Nyandoro OTC, John S (2009) Neural network based feedback linearisation slip control of an anti-lock braking system. In: Asian control conference (ASCC 2009), Hong Kong, China

  4. De Jesus O, Pukrittayakamee A, Hagan MT (2001) A comparison of neural network control algorithms. In: International joint conference on neural networks (IJCNN’01), Washington, DC

  5. Pukrittayakamee A, De Jesus O, Hagan MT (2002) Smoothing the control action for NARMA-L2 controllers. In: 45th Midwest symposium on circuits and systems (MWSCAS 2002), Tulsa, OK

  6. Hagan MT, Demuth HB, De Jesus O (2002) An introduction to the use of neural networks in control systems. Int J Robust Nonlinear Control 12(11):959–985. doi:10.1002/rnc.727

    Article  MATH  Google Scholar 

  7. Wahyudi M, Mokri SS, Shafie AA (2008) Real time implementation of NARMA L2 feedback linearization and smoothed NARMA L2 controls of a single link manipulator. In: International conference on computer and communication engineering, Kuala Lumpur, Malaysia

  8. Akbarimajd A, Kia S (2010) NARMA-L2 controller for 2-DoF underactuated planar manipulator. In: International conference on control, automation, robotics and vision (ICARCV 2010), Singapore

  9. Vesselenyi T, Dzitac S, Dzitac I, Manolescu MJ (2007) Fuzzy and neural controllers for a pneumatic actuator. Int J Comput Commun Control 2(4):375–387

    Article  Google Scholar 

  10. Efe MO, Kaynak O (2000) A comparative study of soft-computing methodologies in identification of robotic manipulators. Robot Auton Syst 30(3):221–230

    Article  Google Scholar 

  11. Efe MO, Kaynak O (1999) A comparative study of neural network structures in identification of nonlinear systems. Mechatronics 9(3):287–300. doi:10.1016/S0957-4158(98)00047-6

    Article  MathSciNet  Google Scholar 

  12. Denai MA, Palis F, Zeghbib A (2004) ANFIS based modelling and control of non-linear systems: a tutorial. In: IEEE international conference on systems, man and cybernetics

  13. Gretton A, Doucet A, Herbrich R, Rayner PJW, Scholkopf B (2001) Support vector regression for black-box system identification. In: IEEE workshop on statistical signal processing (SSP 2001), Singapore

  14. Rong HN, Zhang GX, Zhang CF (2005) Application of support vector machines to nonlinear system identification. In: International symposium on autonomous decentralized systems (ISADS 2005), Chengdu, China

  15. Suykens JAK (2001) Nonlinear modelling and support vector machines. In: IEEE instrumentation and measurement technology conference (IMTC 2001), Budapest, Hungary

  16. Ucak K, Oke G (2011) Adaptive PID controller based on online LSSVR with kernel tuning. In: International symposium on innovations in intelligent systems and applications (INISTA 2011), Istanbul, Turkey

  17. Iplikci S (2010) A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int J Robust Nonlinear Control 20(13):1483–1501. doi:10.1002/rnc.1524

  18. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999. doi:10.1109/72.788640

    Article  Google Scholar 

  19. Wanfeng S, Shengdun Z, Yajing S (2008) Adaptive PID controller based on online LSSVM identification. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2008), Xian, China

  20. Zhao J, Li P, Wang Xs (2009) Intelligent PID controller design with adaptive criterion adjustment via least squares support vector machine. In: 21st Chinese control and decision conference (CCDC 2009), Guilin, China

  21. Yuan XF, Wang YN, Wu LH (2008a) Composite feedforward–feedback controller for generator excitation system. Nonlinear Dyn 54(4):355–364. doi:10.1007/s11071-008-9334-6

    Article  MATH  Google Scholar 

  22. Takao K, Yamamoto T, Hinamoto T (2006) A design of PID controllers with a switching structure by a support vector machine. In: 2006 IEEE international joint conference on neural network (IJCNN), Vancouver, Canada

  23. Liu XJ, Yi JQ, Zhao DB (2005) Adaptive inverse control system based on least squares support vector machines. In: 2nd international symposium on neural networks (ISNN 2005), Chongqing, China

  24. Wang H, Pi DY, Sun YX (2007) Online SVM regression algorithm-based adaptive inverse control. Neurocomputing 70(4–6):952–959. doi:10.1016/j.neucom.2006.10.021

    Article  Google Scholar 

  25. Yuan XF, Wang YN, Wu LH (2008b) Adaptive inverse control of excitation system with actuator uncertainty. Neural Process Lett 27(2):125–136. doi:10.1007/s11063-007-9064-7

    Article  Google Scholar 

  26. Zhao ZC, Liu ZY, Xia ZM, Zhang JG (2012) Internal model control based on LS-SVM for a class of nonlinear process. In: International conference on solid state devices and materials science (SSDMS), Macao, China

  27. Zhong WM, Pi DY, Sun YX, Xu C, Chu SZ (2006) SVM based internal model control for nonlinear systems. In: 3rd International symposium on neural networks (ISNN 2006), Chengdu, China

  28. Datta A, Ochoa J (1996) Adaptive internal model control: design and stability analysis. Automatica 32(2):261–266. doi:10.1016/0005-1098(96)85557-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun CY, Song JY (2007) An adaptive internal model control based on LS-SVM. In: International symposium on neural networks (ISNN 2007), Nanjing, China

  30. Wang YN, Yuan XF (2008) SVM approximate-based internal model control strategy. Acta Autom Sin 34(2):172–179. doi:10.3724/SP.J.1004.2008.00172

    Article  MathSciNet  MATH  Google Scholar 

  31. Iplikci S (2006a) Online trained support vector machines-based generalized predictive control of non-linear systems. Int J Adapt Control Signal Process 20(10):599–621. doi:10.1002/acs.919

    Article  MathSciNet  MATH  Google Scholar 

  32. Iplikci S (2006b) Support vector machines-based generalized predictive control. Int J Robust Nonlinear Control 16(17):843–862. doi:10.1002/rnc.1094

    Article  MathSciNet  MATH  Google Scholar 

  33. Camacho EF (1993) Constrained generalized predictive control. IEEE Trans Autom Control 38(2):327–332. doi:10.1109/9.250485

    Article  MathSciNet  MATH  Google Scholar 

  34. Clarke DW, Mohtadi C (1989) Properties of generalized predictive control. Automatica 25(6):859–875. doi:10.1016/0005-1098(89)90053-8

    Article  MathSciNet  MATH  Google Scholar 

  35. Camacho EF, Bordons C (1999) Model predictive control. Springer, New York

    Book  MATH  Google Scholar 

  36. Clarke DW, Mohtadi C, Tuffs PS (1987) Generalized predictive control—Part I. The basic algorithm. Automatica 23(2):137–148. doi:10.1016/0005-1098(87)90087-2

    Article  MATH  Google Scholar 

  37. Zhiying D, Xianfang W (2008) Nonlinear generalized predictive control based on online SVR. In: 2nd International symposium on intelligent information technology application, Shanghai, China

  38. Shin J, Kim HJ, Park S, Kim Y (2010) Model predictive flight control using adaptive support vector regression. Neurocomputing 73(4–6):1031–1037. doi:10.1016/j.neucom.2009.10.002

    Article  Google Scholar 

  39. Abu-Rub H, Awwad A (2009) Artificial neural networks and fuzzy logic based control of AC motors. In: IEEE international electric machines and drives conference (IEMDC 2009), Miami, FL

  40. Norgaard M, Ravn O, Poulsen NK, Hansen LK (2000) Neural networks for modelling and control of dynamic systems. Springer, London

    Book  MATH  Google Scholar 

  41. Ng GW (1997) Application of neural networks to adaptive control of nonlinear systems. In: UMIST control systems centre series, 4 (Book 4), Research Studies Press Ltd, Taunton, UK

  42. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. doi:10.1023/A:1022627411411

    MATH  Google Scholar 

  43. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. In: Annual conference on neural information processing systems (NIPS), Denver, CO

  44. Vapnik V, Golowich SE, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Annual conference on neural information processing systems (NIPS), Denver, CO

  45. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  46. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  47. Martin M (2002) On-line support vector machine regression. In: 13th European conference on machine learning (ECML 2002), Helsinki, Finland

  48. Ma J, Theiler J, Perkins S (2003) Accurate online support vector regression. Neural Comput 15(11):2683–2703

    Article  MATH  Google Scholar 

  49. Luenberger DG, Ye Y (2008) Linear and nonlinear programming, 3rd edn. Springer, New York

    MATH  Google Scholar 

  50. Griva I, Nash SG, Sofer A (2009) Linear and nonlinear optimization, 2nd edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  51. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  MATH  Google Scholar 

  52. Cauwenberghs G, Poggio T (2001) Incremental and decremental support vector machine learning. In: Annual neural information processing systems conference (NIPS), Denver, CO

  53. Ungar LH (1990) Neural networks for control. In: Miller WT III, Sutton RS, Werbos PJ (eds) A bioreactor benchmark for adaptive network based process control. MIT Press, Cambridge, pp 387–402

    Google Scholar 

  54. Efe MO, Abadoglu E, Kaynak O (1999) A novel analysis and design of a neural network assisted nonlinear controller for a bioreactor. Int J Robust Nonlinear Control 9(11):799–815. doi:10.1002/(SICI)1099-1239(199909)9:<11799::AID-RNC441>3.0.CO;2-U

  55. Efe MO (2007) Discrete time fuzzy sliding mode control of a biochemical process. In: 9th WSEAS international conference on automatic control, modeling and simulation (ACMOS’07), Istanbul, Turkey

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Uçak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uçak, K., Öke Günel, G. A Novel Adaptive NARMA-L2 Controller Based on Online Support Vector Regression for Nonlinear Systems. Neural Process Lett 44, 857–886 (2016). https://doi.org/10.1007/s11063-016-9500-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9500-7

Keywords

Navigation