Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Global Robust Exponential Stability for Interval Delayed Neural Networks with Possibly Unbounded Activation Functions

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we mainly study the global robust exponential stability of the neural networks with possibly unbounded activation functions. Based on the topological degree theory and Lyapunov functional method, we provide some new sufficient conditions for the global robust exponential stability. Under these conditions, we prove existence, uniqueness and global robust exponential stability of equilibrium point. In the end, some examples are provided to demonstrate the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Faydasicok O, Arik S (2012) Robust stability analysis of a class of networks with discrete time delays. Neural Netw 29–30:52–59

    Article  Google Scholar 

  2. Faydasicok O, Arik S (2012) Further analysis of global robust stability of neural networks with multiple time delays. J Frankl Inst 349:813–825

    Article  MATH  MathSciNet  Google Scholar 

  3. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 13:1239–1242

    Article  Google Scholar 

  4. Liang XB, Wang J (2001) An additive diagonal-stability condition for absolute exponential stability of a general class of neural networks. IEEE Trans Circuits Syst 48:1308–1317

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhang JY (2003) Global stability analysis in delayed cellular neural networks. Comput Math Appl 45:1707–1720

    Article  MATH  MathSciNet  Google Scholar 

  6. Arik S (2000) Stability analysis of delayed neural networks. IEEE Trans Circuits Syst 47:1089–1092

    Article  MATH  MathSciNet  Google Scholar 

  7. Wu HQ, Tao F, Qin LJ, Shi R, He LJ (2011) Robust exponential stability for interval neural networks with delays and non-Lipschitz activation functions. Nonlinear Dyn 66:479–487

    Article  MATH  MathSciNet  Google Scholar 

  8. Qiao C, Xu ZB (2012) Critical dynamics study on recurrent neural networks: globally exponential stability. Neurocomputing 77:205–211

    Article  Google Scholar 

  9. Liao XF, Chen GR, Edgar N (2002) Sanchez, delay-dependent exponential stability analysisof delayed neural networks: an LMI approach. Neural Netw 15:855–866

    Article  Google Scholar 

  10. Sun C, Feng C (2003) Global robust exponential stability of interval neural networks with delays. Neural Process Lett 17:107–115

    Article  Google Scholar 

  11. Hou LL, Zong GD, Wu YQ (2011) Robust exponential stability analysis of discrete-time switched Hopfield neural networks with time delay. Nonlinear Anal Hybrid Syst 5:525–534

    Article  MATH  MathSciNet  Google Scholar 

  12. Shao JL, Huang TZ, Zhou S (2009) An analysis on global robust exponential stability of neural networks with time-varying delays. Neurocomputing 72:1993–1998

    Article  Google Scholar 

  13. Shao JL, Huang TZ, Wang XP (2011) Improved global robust exponential stability criteria for interval neural networks with time-varying delays. Expert Syst Appl 38(12):15587–15593

    Article  Google Scholar 

  14. Faydasicok O, Arik S (2012) Equilibrium and stability analysis of delayed neural networks under parameter uncertainties. Appl Math Comput 218(2012):6716–6726

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang Z, Gao H, Cao J, Liu X (2008) On delayed genetic regulatory networks with polytopic uncertainties: robust stability analysis. IEEE Trans NanoBioscience 7:154–163

    Article  Google Scholar 

  16. Arik S (2005) Global robust stability analysis of neural networks with discrete time delays. Chaos Solitons Fract 26:1407–1414

    Article  MATH  MathSciNet  Google Scholar 

  17. Cao J, Wang J (2005) Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans Circuits Syst I Fundam Theory Appl 52(2):417–426

    Article  MathSciNet  Google Scholar 

  18. Ozcan N, Arik S (2006) Global robust stability analysis of neural networks with multiple time delays. IEEE Trans Circuits Syst I Reg Pap 53(1):166–176

    Article  MathSciNet  Google Scholar 

  19. Qi H (2007) New sufficient conditions for global robust stability of delayed neural networks. IEEE Trans Circuits Syst I Reg Pap 54(5):1131–1141

    Article  Google Scholar 

  20. Yucel E, Arik S (2009) Novel results for global robust stability of delayed neural networks. Chaos Solitons Fractals 39(4):1604–1614

    Article  MATH  MathSciNet  Google Scholar 

  21. Cao J, Huang D, Qu Y (2005) Global robust stability of recurrent neural networks. Chaos Solitons Fractals 23:221–229

    Article  MATH  MathSciNet  Google Scholar 

  22. Ensari T, Arik S (2010) New results for robust stability of dynamical neural networks with discrete time delays. Expert Syst Appl 27:5925–5930

    Article  Google Scholar 

  23. Singh V (2007) Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix, Chaos. Solitons Fractals 32:259–263

    Article  MATH  Google Scholar 

  24. Cao J, Chen T (2004) Global exponentially robust stability and periodicity of delayed neural networks. Chaos Solitons Fractals 22:957–963

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang J (2006) Global exponential stability of interval neural networks with variable delays. Appl Math Lett 19:1222–1227

    Article  MATH  MathSciNet  Google Scholar 

  26. Shao JL, Huang TZ, Zhou S (2010) Some improved criteria for global robust exponential stability of neural networks with time-varying delays. Commun Nonlinear Sci Numer Simul 15(2):3782–3794

    Article  MATH  MathSciNet  Google Scholar 

  27. Singh V (2009) Improved global robust stability criterion for interval delayed neural networks. IET Control Theory Appl 3:1648–1653

    Article  MathSciNet  Google Scholar 

  28. Singh V (2005) Global robust stability of delayed neural networks: an LMI approach. IEEE Trans Circuits Syst II 52(1):33–36

    Article  Google Scholar 

  29. Li C, Liao X (2006) Global robust stability criteria for interval delayed neural networks via an LMI approach. IEEE Trans Circuits Syst II 53(9):901–905

    Article  Google Scholar 

  30. Zhang H, Wang Z, Liu D (2007) Robust exponential stability of recurrent neural networks with multiple time-varying delays. IEEE Trans Circuits Syst II 54(8):730–734

    Article  Google Scholar 

  31. Shen T, Zhang Y (2007) Improved global robust stability criteria for delayed neural networks. IEEE Trans Circuits Syst II 54(8):715–719

    Article  Google Scholar 

  32. Shao JL, Huang TZ (2008) A note on Global robust stability criteria for interval delayed neural networks via an LMI approach. IEEE Trans Circuits Syst II 55(11):1198–1202

    Article  Google Scholar 

  33. Zhang H, Wang Z, Liu D (2009) Global asymptotic stability and robust stability of a class of Cohen-Grossberg neural networks with mixed delays. IEEE Trans Circuits Syst I 56(3):616–629

    Article  MathSciNet  Google Scholar 

  34. Zheng C, Zhang H, Wang Z (2010) Improved robust stability criteria for delayed cellular neural networks via the LMI Approach. IEEE Trans Circuits Syst II 57(1):41–45

    Article  MathSciNet  Google Scholar 

  35. Singh V (2008) Improved global robust stability for interval-delayed hopfield neural networks. Neural Process Lett. 27(3):257–265

    Article  Google Scholar 

  36. Qin ST, Xue XP (2010) Dynamical behavior of a class of nonsmooth gradient-like systems. Neurocomputing 73:2632–2641

    Article  Google Scholar 

  37. Qin ST, Xue XP (2009) Global exponential stability and global convergence in finite time of neural networks with discontinuous activations. Neural Process Lett 29:189–204

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank editor-in-chief, associate editor and eight anonymous reviewers for their insightful and constructive comments, which helped to enrich the content and improve the presentation of this paper. This work was supported by the national science fund of grant (10971043, 11126218, 11101107), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT.NSRIF.201015,HIT.NSRIF.201017,HIT.NSRIF.2009157), Shandong Provincial Natural Science Foundation of China (ZR2011AM004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, S., Fan, D., Yan, M. et al. Global Robust Exponential Stability for Interval Delayed Neural Networks with Possibly Unbounded Activation Functions. Neural Process Lett 40, 35–50 (2014). https://doi.org/10.1007/s11063-013-9309-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-013-9309-6

Keywords

Navigation