Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Face Recognition and Micro-expression Recognition Based on Discriminant Tensor Subspace Analysis Plus Extreme Learning Machine

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a novel recognition algorithm based on discriminant tensor subspace analysis (DTSA) and extreme learning machine (ELM) is introduced. DTSA treats a gray facial image as a second order tensor and adopts two-sided transformations to reduce dimensionality. One of the many advantages of DTSA is its ability to preserve the spatial structure information of the images. In order to deal with micro-expression video clips, we extend DTSA to a high-order tensor. Discriminative features are generated using DTSA to further enhance the classification performance of ELM classifier. Another notable contribution of the proposed method includes significant improvements in face and micro-expression recognition accuracy. The experimental results on the ORL, Yale, YaleB facial databases and CASME micro-expression database show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The matlab code can be downloaded from http://www3.ntu.edu.sg/home/egbhuang/.

  2. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

  3. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  4. http://www.zjucadcg.cn/dengcai/Data/FaceData.html.

  5. The matlab code can be downloaded from http://www.zjucadcg.cn/dengcai/Data/data.html.

  6. The onset is the first frame which changes from the baseline (usually neutral facial expressions). The apex is the one that reaches highest intensity of the facial expression. The offset is the last frame of the expression (before turning back to a neutral facial expression). Sometimes the facial expressions faded very slowly, and the changes between frames were very difficult to detect by eyes. For such offset frames, the coders only coded the last obvious frame as the offset frame while ignore the nearly imperceptible changing frames.

References

  1. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19(7):711–720

    Article  Google Scholar 

  2. Bian W, Tao D (2011) Max–min distance analysis by using sequential sdp relaxation for dimension reduction. IEEE Trans Pattern Anal Machine Intell 33(5):1037–1050

    Article  Google Scholar 

  3. Chen H, Yang B, Liu J, Liu D (2011) A support vector machine classifier with rough set based feature selection for breast cancer diagnosis. Expert Syst Appl 38:9014–9022

    Google Scholar 

  4. Chen SB, Zhao HF, Kong M, Luo B (2007) 2D-LPP: a two-dimensional extension of locality preserving projections. Neurocomputing 70(4–6):912–921

    Article  Google Scholar 

  5. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learn 20(3):273–297

    MATH  Google Scholar 

  6. Ekman P (1992) An argument for basic emotions. Cogn Emotion 6(3–4):169–200

    Article  Google Scholar 

  7. Ekman P, Friesen W (1969) Nonverbal leakage and clues to deception. Technical report, DTIC document

  8. Ekman P, Friesen W, Hager J (2002) FACS: investigators guide. In: A Human Face. Research Nexus eBook, Salt Lake City

  9. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intell 23(6):643–660

    Article  Google Scholar 

  10. Guan N, Tao D, Luo Z, Shawe-Taylor J (2012) Mahnmf: Manhattan non-negative matrix factorization. arXiv, preprint arXiv:1207.3438. Accessed 12 Sept 2012

  11. Guan N, Tao D, Luo Z, Yuan B (2011) Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans Image Process 20(7):2030–2048

    Article  MathSciNet  Google Scholar 

  12. Guan N, Tao D, Luo Z, Yuan B (2011) Non-negative patch alignment framework. IEEE Trans Neural Netw 22(8):1218–1230

    Article  Google Scholar 

  13. Guan N, Tao D, Luo Z, Yuan B (2012) Nenmf: an optimal gradient method for nonnegative matrix factorization. IEEE Trans Signal Process 60(6):2882–2898

    Article  MathSciNet  Google Scholar 

  14. Guan N, Tao D, Luo Z, Yuan B (2012) Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans Neural Netw Learn Syst 23(7):1087–1099

    Article  Google Scholar 

  15. He X, Cai D, Niyogi P (2005) Tensor subspace analysis. In: Advances in neural information processing systems, vol 18. MIT Press, Cambridge

  16. He XF, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems, vol 16. The MIT Press, Cambridge, pp 153–160

  17. Huang G (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2):274–281

    Article  Google Scholar 

  18. Huang G, Babri H (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9(1):224–229

    Article  Google Scholar 

  19. Huang G, Chen L, Siew C (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  20. Huang G, Zhu Q, Siew C (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks, vol 2. IEEE, New York, pp. 985–990

  21. Huang G, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  22. Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features. Machine Learning. In: ECML-98, Springer Verlag, Heidelberg, pp 137–142

  23. Li J, Tao D (2010) Simple exponential family PCA. J Mach Learn Res 9:453–460, Proceedings of the 13th International Conterence on Artificial Intelligence and Statistics, AISTATS 2010

    Google Scholar 

  24. Li M, Yuan BZ (2005) 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recogn Lett 26(5):527–532

    Article  Google Scholar 

  25. Lu H, Plataniotis KN, Venetsanopoulos AN (2008) MPCA: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39

    Article  Google Scholar 

  26. Van der Maaten L, Postma E, Van Den Herik H (2009) Dimensionality reduction: a comparative review. Tilburg University, Technical report

  27. Nizar A, Dong Z, Wang Y (2008) Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans Power Syst 23(3):946–955

    Article  Google Scholar 

  28. Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: 1997 IEEE computer society conference on computer vision and, pattern recognition, pp 130–136

  29. Song F, Zhang D, Chen Q, Wang J (2007) Face recognition based on a novel linear discriminant criterion. Pattern Anal Appl 10(3):165–174

    Article  MathSciNet  Google Scholar 

  30. Tao D, Li X, Wu X, Hu W, Maybank S (2007) Supervised tensor learning. Knowl Inf Syst 13(1):1–42

    Article  Google Scholar 

  31. Tao D, Li X, Wu, X Maybank S (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Machine Intell 29:1700–1715

    Google Scholar 

  32. Tao D, Song M, Li X, Shen J, Sun J, Wu X, Faloutsos C, Maybank S (2008) Bayesian tensor approach for 3-d face modeling. IEEE Trans Circuits Syst Video Technol 18(10):1397–1410

    Article  Google Scholar 

  33. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  34. Vapnik V (2000) The nature of statistical learning theory. Springer Verlag, Berlin

  35. Wang SJ, Yang J, Sun MF, Peng XJ, Sun MM, Zhou CG (2012) Sparse tensor discriminant color space for face verification. IEEE Trans Neural Netw Learn Syst 23(6):876–888

    Article  Google Scholar 

  36. Wang SJ, Yang J, Zhang N, Zhou CG (2011) Tensor discriminant color space for face recognition. IEEE Trans Image Process 20(9):2490–2501

    Article  MathSciNet  Google Scholar 

  37. Wang SJ, Zhou CG, Zhang N, Peng XJ, Chen YH, Liu X (2011) Face recognition using second-order discriminant tensor subspace analysis. Neurocomputing 74(12–13):2142–2156

    Article  Google Scholar 

  38. Xu Y, Feng G, Zhao YN (2009) One improvement to two-dimensional locality preserving projection method for use with face recognition. Neurocomputing 73(1–3):245–249

    Article  Google Scholar 

  39. Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang HJ (2005) Discriminant analysis with tensor representation. Proc IEEE Comput Soc Conf Comput Vision Pattern Recogn 1:526–532

    Google Scholar 

  40. Yan WJ, Wu Q, Liu YJ, Wang SJ, FU X (2013) CASME Database: a dataset of spontaneous micro-expressions collected from neutralized faces. In: 10th IEEE conference on automatic face and gesture recognition, Shanghai

  41. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Machine Intell 26(1):131–137

    Article  Google Scholar 

  42. Yu W (2009) Two-dimensional discriminant locality preserving projections for face recognition. Pattern Recogn Lett 30(15):1378–1383

    Article  Google Scholar 

  43. Yu WW, Teng XL, Liu CQ (2006) Face recognition using discriminant locality preserving projections. Image Vis Comput 24(3):239–248

    Article  Google Scholar 

  44. Zhang R, Huang G, Sundararajan N, Saratchandran P (2007) Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans Comput Biol Bioinformatics 4(3):485–495

    Google Scholar 

  45. Zhang T, Tao D, Li X, Yang J (2008) Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng 21:1299–1313

    Google Scholar 

  46. Zhou T, Tao D, Wu X (2010) Manifold elastic net: a unified framework for sparse dimension reduction. In: Data mining and knowledge discovery, Springer, Heidelberg, pp 1–32

Download references

Acknowledgments

This work was supported in part by grants from 973 Program (2011CB302201), the National Natural Science Foundation of China (61075042, 61175023) and China Postdoctoral Science Foundation funded project (2012M520428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SJ., Chen, HL., Yan, WJ. et al. Face Recognition and Micro-expression Recognition Based on Discriminant Tensor Subspace Analysis Plus Extreme Learning Machine. Neural Process Lett 39, 25–43 (2014). https://doi.org/10.1007/s11063-013-9288-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-013-9288-7

Keywords

Navigation