Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Feature Extraction Based on Maximum Nearest Subspace Margin Criterion

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Based on the classification rule of sparse representation-based classification (SRC) and linear regression classification (LRC), we propose the maximum nearest subspace margin criterion for feature extraction. The proposed method can be seen as a preprocessing step of SRC and LRC. By maximizing the inter-class reconstruction error and minimizing the intra-class reconstruction error simultaneously, the proposed method significantly improves the performances of SRC and LRC. Compared with linear discriminant analysis, the proposed method avoids the small sample size problem and can extract more features. Moreover, we extend LRC to overcome the potential singular problem. The experimental results on the extended Yale B (YALE-B), AR, PolyU finger knuckle print and the CENPARMI handwritten numeral databases demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li SZ (1998) Face recognition based on nearest linear combinations. In: Proceedings of IEEE international conference on computer vision and pattern recognition, pp 839–844

  2. Li SZ, Lu J (1999) Face recognition using nearest feature line method. IEEE Trans Neural Netw 10(2): 439–443

    Article  Google Scholar 

  3. Li SZ, Chan KL, Wang CL (2000) Performance evaluation of the nearest feature line method in image classification and retrieval. IEEE Trans Pattern Anal Mach Intell 22(11): 1335–1339

    Article  Google Scholar 

  4. Chien J-T, Wu C-C (2002) Discriminant wavelet faces and nearest feature classifiers for face recognition. IEEE Trans Pattern Anal Mach Intell 24(12): 1644–1649

    Article  Google Scholar 

  5. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2): 210–227

    Article  Google Scholar 

  6. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11): 2106–2112

    Article  Google Scholar 

  7. Jolliffe IT (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  8. Belhumeur PN, Hespanda J, Kiregeman D (1997) Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7): 711–720

    Article  Google Scholar 

  9. Li H, Jiang T, Zhang K (2003) Efficient and robust feature extraction by maximum margin criterion. In: Proceedings of advances in neural information processing systems, pp 97–104

  10. He X, Yan S, Hu Y, Niyogi P, Zhang H-J (2005) Face recognition using Laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3): 328–340

    Article  Google Scholar 

  11. He X, Cai Deng, Yan S, Zhang HJ (2005a) Neighborhood preserving embedding. In: Proceedings of the 10th IEEE international conference on computer vision, pp 1208-1213

  12. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1): 40–51

    Article  Google Scholar 

  13. Yang J, Zhang D, Yang J, Niu B (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664

    Google Scholar 

  14. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. In: IEEE conference on computer vision and pattern recognition (CVPR 2005), pp 846–853

  15. Wang F, Wang X, Zhang D, Zhang CS, Li T (2009) marginFace: a novel face recognition method by average neighborhood margin maximization. Pattern Recognit 42(11): 2863–2875

    Article  MathSciNet  MATH  Google Scholar 

  16. Candès E, Tao T (2006) Near optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans Inf Theory 52(12): 5406–5425

    Article  Google Scholar 

  17. Donoho D (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6): 797–829

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8): 1207–1223

    Article  MATH  Google Scholar 

  19. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference and prediction. Springer, New York

  20. Seber GAF (2003) Linear regression analysis. Wiley-Interscience, Hoboken

    Book  MATH  Google Scholar 

  21. Ryan TP (1997) Modern regression methods. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  22. Hoerl AE, Kennard RW (1970) Ridge regression: applications to nonorthogonal problems. Technometrics 12(1): 69–82

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1): 55–67

    Article  MathSciNet  MATH  Google Scholar 

  24. Jolliffe IT (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  25. Li H, Jiang T, Zhang K (2003) Efficient and robust feature extraction by maximum margin criterion. In: Proceedings of Advances in Neural Information Processing Systems, pp 97–104

  26. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1): 21–27

    Article  MATH  Google Scholar 

  27. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5): 684–698

    Article  Google Scholar 

  28. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6): 643–660

    Article  Google Scholar 

  29. The extended YALE-B database: http://www.zjucadcg.cn/dengcai/Data/FaceData.html

  30. Martinez AM, enavente RB (1998) The AR Face Database. CVC Technical Report, no. 24

  31. Martinez AM, enavente RB (2003) The AR Face Database. http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html

  32. Zhang L, Zhang L, Zhang D, Zhu H (2010) Online finger-knuckle-print verification for personal authentication. Pattern Recognit 43(7): 2560–2571

    Article  MATH  Google Scholar 

  33. Zhang L, Zhang L, Zhang D (2009) Finger-knuckle-print: a new biometric identifier. In: Proceedings of the IEEE international conference on image processing

  34. The FKP database. http://www.comp.polyu.edu.hk/~biometrics/FKP.htm

  35. Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3): 254–266

    Article  Google Scholar 

  36. Weilong C, Joo ME, Wu S (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans Syst Man Cybernet 36(2): 458–464

    Article  Google Scholar 

  37. Gonzalez RC, Woods RE (2007) Digital image processing. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Li, Z. & Jin, Z. Feature Extraction Based on Maximum Nearest Subspace Margin Criterion. Neural Process Lett 37, 355–375 (2013). https://doi.org/10.1007/s11063-012-9252-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9252-y

Keywords

Navigation