Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Neuro-logistic Models Based on Evolutionary Generalized Radial Basis Function for the Microarray Gene Expression Classification Problem

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Gene expression detection is a key bioinformatic problem which has been tackled as a classification problem of microarray gene expression, obtained by the light reflection analysis of genomic material. A typical microarray dataset may contain thousands of genes but only a small number of patterns (often less than two hundred). When the dataset presents these kinds of characteristics, state-of-the-art classification models show a high lack of performance. A two-stage algorithm has been proposed to successfully address the problem of microarray classification. In the first stage, two filter algorithms identify salient expression genes from thousands of genes. In the second stage, the proposed methodology is performed using selected gene subsets as new input variables. The methodology proposed is composed of a combination of Logistic Regression (LR) and Evolutionary Generalized Radial Basis Function (EGRBF) neural networks which have shown to be highly accurate in previous research in the modeling of high-dimensional patterns. Finally, the results obtained are contrasted with nonparametric statistical tests and confirm good synergy between EGRBF and LR models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alon U, Barka N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96(12): 6745–6750

    Article  Google Scholar 

  2. Bandurski K, Kwedlo W (2010) A lamarckian hybrid of differential evolution and conjugate gradients for neural network training. Neural Process Lett 32(1): 31–44

    Article  Google Scholar 

  3. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is Nearest neighbor meaningful? In: International conference on database theory, pp 217–235

  4. Bhattacharjee A, Richards W, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark E, Lander E, Wong W, Johnson B, Golub T, Sugarbaker D, Meyerson M (2001) Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98(24): 13,790–13,795

    Article  Google Scholar 

  5. Castaño A, Fernández-Navarro F, Hervás-Martínez C, Gutierrez PA, García MM (2010) Classification by evolutionary generalized radial basis functions. Int J Hybrid Intell Syst 7(1): 1–10

    Google Scholar 

  6. le Cessie S, van Houwelingen J (1992) Ridge estimators in logistic regression. Appl Stat 41(1): 191–201

    Article  MATH  Google Scholar 

  7. Chang C, Lin C (2011) Libsvm: a library for support vector machines

  8. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1–30

    MathSciNet  Google Scholar 

  9. Fernández-Navarro F, Hervás-Martínez C, Cruz M, Gutierrez PA, Valero A (2011) Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus. Appl Soft Comput 11(3): 3012–3020

    Article  Google Scholar 

  10. Fernández-Navarro F, Hervás-Martínez C, Gutíerrez PA (2011) A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognition. http://dx.doi.org/10.1016/j.patcog.2011.02.019

  11. Fernández-Navarro F, Hervás-Martínez C, Gutierrez PA, Carboreno M (2011) Evolutionary q-gaussian radial basis functions neural networks for multi-classification. Neural Networks In Press. http://dx.doi.org/10.1016/j.neunet.2011.03.014

  12. Fernández-Navarro F, Hervás-Martínez C, Sánchez-Monedero J, Gutierrez PA (2011) MELM-GRBF: a modified version of the extreme learning machine for generalized radial basis function neural networks. Neurocomputing (in press)

  13. Francois D (2008) High dimentional data analisis, from optimal metric to feature selection. In: Seeking on right metric. VDM Verlag, Saarbrucken, pp 54–55

  14. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1): 86–92

    Article  MATH  Google Scholar 

  15. Fu L, Zhang M, Li H (2010) Sparse rbf networks with multi-kernels. Neural Process Lett 32(3): 235–247

    Article  Google Scholar 

  16. Gill PE, Murray W, Wright MH (1982) Practical optimization. Academic Press, New York

    Google Scholar 

  17. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439): 531–537

    Article  Google Scholar 

  18. Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, New York

    MATH  Google Scholar 

  19. Hervás-Martínez C, Martínez-Estudillo F (2007) Logistic regression using covariates obtained by product-unit neural network models. Pattern Recognit 40(1):52–64

    Article  Google Scholar 

  20. Hervás-Martínez C, Martínez-Estudillo FJ, Carbonero-Ruz M (2008) Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw 21(7):951–961

    Article  Google Scholar 

  21. Howell AJ, Buxton H (2002) RBF network methods for face detection and attentional frames. Neural Process Lett 15(3): 197–211

    Article  MATH  Google Scholar 

  22. Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59(1–2): 161–205

    Article  MATH  Google Scholar 

  23. Li J, Liu X (2011) Melt index prediction by RBF neural network optimized with an MPSO-SA hybrid algorithm. Neurocomputing 74(5): 735–740

    Article  Google Scholar 

  24. Li M, Huang G, Saratchandran P, Sundararajan N (2005) Performance evaluation of gap-rbf network in channel equalization. Neural Process Lett 22(2): 223–233

    Article  MATH  Google Scholar 

  25. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JYH, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870): 436–442

    Article  Google Scholar 

  26. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98(26): 15,149–15,154

    Article  Google Scholar 

  27. Ruiz R, Aguilar-Ruiz J, Riquelme J (2008) Best agglomerative ranked subset for feature selection. JMLR Workshop Conf Proc 4: 146–160

    Google Scholar 

  28. Van’t Veer LJ, Dai H, Vande Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, VanDer Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871): 530–536

    Article  Google Scholar 

  29. Vapnik VN (1999) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  30. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann series in data management systems. Elsevier, Amsterdam

    Google Scholar 

  31. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Fawcett T, Mishra NICML. AAAI Press, San Francisco, pp 856–863

  32. Zhang M (2009) Ml-rbf: Rbf neural networks for multi-label learning. Neural Process Lett 29(2): 61–74

    Article  Google Scholar 

  33. Zhang ML, Zhou ZH (2006) Adapting RBF neural networks to multi-instance learning. Neural Process Lett 23(1): 1–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fernández-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaño, A., Fernández-Navarro, F., Hervás-Martínez, C. et al. Neuro-logistic Models Based on Evolutionary Generalized Radial Basis Function for the Microarray Gene Expression Classification Problem. Neural Process Lett 34, 117–131 (2011). https://doi.org/10.1007/s11063-011-9187-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-011-9187-8

Keywords

Navigation