Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Geological hazards and their effects are often geographically widespread. Consequently, their effective mapping and monitoring is best conducted using satellite and airborne imaging platforms to obtain broad scale, synoptic coverage. With a multitude of hazards and effects, potential data types, and processing techniques, it can be challenging to determine the best approach for mapping and monitoring. It is therefore critical to understand the spatial and temporal effects of any particular hazard on the environment before selecting the most appropriate data type/s and processing techniques to apply. This review is designed to assist the decision-making and selection process when embarking on a hazard mapping or monitoring exercise. It focuses on the application of optical, LiDAR, and synthetic aperture RADAR technologies for the assessment of pre-event risk and post-event damage. Geological hazards of global interest summarized here are landslides and erosion; seismic and tectonic hazards; ground subsidence; and flooding and tsunami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Google Scholar 

  • Al Fugura AK, Billa L, Pradhan B (2011) Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image. Estuar Coast Shelf Sci 95:395–400

    Google Scholar 

  • Alipour S, Tiampo K, Samsonov S, Gonzalez PJ (2013) Multibaseline PolInSAR using RADARSAT-2 Quad-pol data: improvements in interferometric phase analysis. IEEE Geosci Remote Sens Lett 191:1095–1108

    Google Scholar 

  • Aly MH, Giardino JR, Klein AG, Zebker HA (2012) InSAR study of shoreline change along the Damietta promontory, Egypt. J Coast Res 284:1263–1269

    Google Scholar 

  • Anderson K, Croft H (2009) Remote sensing of soil surface properties. Prog Phys Geogr 33:457–473

    Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Nat Hazards Earth Syst Sci 7:637–650

    Google Scholar 

  • Arrowsmith JR, Zielke O (2009) Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment. Geomorphology 113:70–81

    Google Scholar 

  • Avouac JP, Ayoub F, Leprince S, Konca O, Helmberger DV (2006) The 2005, Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet Sci Lett 249:514–528

    Google Scholar 

  • Ayoub F, Leprince S, Avouac JP (2009) Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS J Photogramm Remote Sens 64:551–560

    Google Scholar 

  • Bahadur KK (2009) Mapping soil erosion susceptibility using remote sensing and GIS: a case of the Upper Nam Wa Watershed, Nan Province, Thailand. Environ Geol 57:695–705

    Google Scholar 

  • Baldo M, Bicocchi C, Chiocchini U, Giordan D, Lollino G (2009) LIDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy. Geomorphology 105:193–201

    Google Scholar 

  • Barisin I, Leprince S, Parsons B, Wright T (2009) Surface displacements in the September 2005 Afar rifting event from satellite image matching: asymmetric uplift and faulting. Geophys Res Lett 36:L07301

    Google Scholar 

  • Barlow J, Franklin SE (2007) Mapping hazardous slope processes using digital data. In: Li J, Zlatanova S, Fabbri AG (eds) Geomatics solutions for disaster management. Springer, Berlin, pp 75–90

  • Barlow J, Franklin SE, Martin Y (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogramm Eng Remote Sens 72:687–692

    Google Scholar 

  • Beavan J, Samsonov S, Denys P, Palmer N, Denham M (2010) Joint inversion of GPS and InSAR data from 15 July 2009 MW 7.8 Dusky Sound earthquake reveals oblique slip on the Puysegur–Fiordland subduction interface. Geophys J Int 183:1265–1286

    Google Scholar 

  • Beavan J, Fielding E, Motagh M, Samonsov S, Donnelly N (2011) Fault location and slip distribution of 22 February 2011 Mw 6.3 Christchurch, New Zealand, earthquake from geodetic data. Seismol Res Lett 82:789–799

    Google Scholar 

  • Bechor NBD, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33:L16311

    Google Scholar 

  • Belliss SE, Pairman D, McNeill SJ (1998) Use of Radarsat data to map Landslide erosion in steep landforms. In: Application development and research opportunity (ADRO) final symposium. Montreal

  • Belward AS, Stibig HJ, Eva H, Rembold F, Bucha T, Hartley A, Beuchle R, Khudhairy D, Michielon M, Mollicone D (2007) Mapping severe damage to land cover following the 2004 Indian Ocean tsunami using moderate spatial resolution satellite imagery. Int J Remote Sens 28:2977–2994

    Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansoti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferometry. IEEE Trans Geosci Remote Sens 41:2375–2583

    Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. Isprs J Photogramm Remote Sens 65:2–16

    Google Scholar 

  • Blaschke TS, Lang S, Hay G (2008) Object-based image analysis. Spatial concepts for knowledge-driven remote sensing applications. Springer, Berlin

    Google Scholar 

  • Bonn F, Dixon R (2005) Monitoring flood extent and forecasting excess runoff risk with Radarsat-1 data. Nat Hazards 35:377–393

    Google Scholar 

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109:132–147

    Google Scholar 

  • Bovolo F, Bruzzone L (2007) A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment. IEEE Trans Geosci Remote Sens 45:1658–1670

    Google Scholar 

  • Cakir Z, Akoglu AM, Balabbes S, Ergintac S, Meghraoui M (2005) Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): rate and extent from InSAR. Earth Planet Sci Lett 238:225–234

    Google Scholar 

  • Casadei M, Dietrich W, Miller N (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil mantled landscapes. Earth Surf Proc Land 28:925–950

    Google Scholar 

  • Casson B, Delacourt C, Allemand P (2005) Contribution of multi-temporal remote sensing images to characterize landslide slip surface—application to the La Clapiere landslide France). Nat Hazards Earth Syst Sci 5:425–437

    Google Scholar 

  • Chen Y, Gillieson D (2009) Evaluation of landsat TM vegetation indices for estimating vegetation cover on semi-arid rangelands: a case study from Australia. Can J Remote Sens 35:435–446

    Google Scholar 

  • Chen R-F, Chang K-J, Angelier J, Chan Y-C, Deffontaines B, Lee C-T, Lin M-L (2006) Topographical changes revealed by high-resolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng Geol 88:160–172

    Google Scholar 

  • Chen F, Lin H, Li Z, Chen Q, Zhou J (2012) Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry. Remote Sens Environ 123:532–540

    Google Scholar 

  • Cheng KS, Wei C, Chang SC (2004) Locating landslides using multi-temporal satellite images. Adv Space Res 33:296–301

    Google Scholar 

  • Cheung S, Slatton KC, Cho H, Dean RG (2011) Multiscale parameterization of LIDAR elevations for reducing complexity in hydraulic models of coastal urban areas. J Appl Remote Sens 5:053508

    Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2012a) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Google Scholar 

  • Cigna F, Osmanoğlu B, Cabral-Cano E, Dixon TH, Ávila-Olivera JA, Garduño-Monroy VH, DeMets C, Wdowinski S (2012b) Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: a case study in Morelia, Mexico. Remote Sens Environ 117:146–161

    Google Scholar 

  • Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34:498–518

    Google Scholar 

  • Corsini A, Cervi F, Daehne A, Ronchetti F, Borgatti L (2009) Coupling geomorphic field observation and LIDAR derivatives to map complex landslides. In: Malet J, Remaitre A, Bogaard T (eds) Landslides processes—from geomorphologic mapping to dynamic modeling, proceedings of the landslide processes conference. Strasbourg

  • Crosetto M, Gili JA, Monserrat O, Cuevas-González M, Corominas J, Serral D (2013) Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors. Nat Hazards Earth Syst Sci 13:923–933

    Google Scholar 

  • Cunningham D, Grebby S, Tansey K, Gosar A, Kastelic V (2006) Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophys Res Lett 33:L20308

    Google Scholar 

  • Dietrich W, Bellugi D, De Asua RR (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. Water Sci Appl 2:195–227

    Google Scholar 

  • Dinger JS, Zourarakis DP, Currens JC (2006) Spectral enhancement and automated extraction from Kentucky’s NAIP imagery of potential sinkhole features, Trigg County, Kentucky, USA- Initial Investigations. Environ Inform Archiv 4:312–323

    Google Scholar 

  • Domakinis C, Oikonomidis D, Astaras T (2008) Landslide mapping in the coastal area between the Strymonic Gulf and Kavala (Macedonia, Greece) with the aid of remote sensing and geographical information systems. Int J Remote Sens 29:6893

    Google Scholar 

  • Dragut L, Blaschke T (2006) Automated classification of landform elements using object-based image analysis. Geomorphology 81:330–344

    Google Scholar 

  • Dymond JR, Ausseil AG, Shepherd JD, Buettner L (2006) Validation of a region-wide model of landslide susceptibility in the Manawatu–Wanganui region of New Zealand. Geomorphology 74:70–79

    Google Scholar 

  • Eeckhaut MVD, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32:754–769

    Google Scholar 

  • Elmahdy SI, Mostafa MM (2013) Natural hazards susceptibility mapping in Kuala Lumpur, Malaysia: an assessment using remote sensing and geographic information system (GIS). Geomat Nat Hazards Risk 4:71–91

    Google Scholar 

  • Engelbrecht J, Musekiwa C, Kemp J, Inggs MR (2013) Parameters affecting interferometric coherence—the case of a dynamic agricultural region. In: IEEE transactions on geoscience and remote sensing, pp 1–1

  • Engelkemeir RM, Khan SD (2008) Lidar mapping of faults in Houston, Texas, USA. Geosphere 4:170

    Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Google Scholar 

  • Ferretti A, Novali F, Burgmann R, Hilley G, Prati C (2004) InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay area. EOS Trans AGU 85(34):317–324

    Google Scholar 

  • Frank CL, Weiwei Z, Kingkarn S (2011) Observation of tsunami radiation at Tohoku by remote sensing. Sci Tsunami Hazards 30:223–232

    Google Scholar 

  • Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36:963–973

    Google Scholar 

  • French J (2003) Airborne LiDAR in support of geomorphological and hydraulic modelling. Earth Surf Proc Land 28:321–335

    Google Scholar 

  • Fuller IC, Heerdegen RG (2005) The February 2004 floods in the Manawatu, New Zealand: hydrological significance and impact on channel morphology. J Hydrol (New Zealand) 44:75–90

    Google Scholar 

  • Garay MJ, Diner DJ (2007) Multi-angle Imaging SpectroRadiometer (MISR) time-lapse imagery of tsunami waves from the 26 December 2004 Sumatra–Andaman earthquake. Remote Sens Environ 107:256–263

    Google Scholar 

  • Geudtner D, Winter R, Vachon P (1996) Flood monitoring using ERS-1 SAR interferometry coherence maps. Int Geosci Remote Sens Symp 2:966–968

    Google Scholar 

  • Gillespie TW, Chu J, Frankenberg E, Thomas D (2007) Assessment and prediction of natural hazards from satellite imagery. Prog Phys Geogr 31:459–470

    Google Scholar 

  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102:214–226

    Google Scholar 

  • Goff J, Lane E, Arnold J (2009) The tsunami geomorphology of coastal dunes. Nat Hazards Earth Syst Sci 9:847–854

    Google Scholar 

  • Gourmelen N, Amelung F, Casu F, Manzo M, Lanari R (2007) Mining-related ground deformation in Crescent Valley, Nevada: implications for sparse GPS networks. Geophys Res Lett 34

  • Gower J (2007) The 26 December 2004 tsunami measured by satellite altimetry. Int J Remote Sens 28:2897–2913

    Google Scholar 

  • Gutiérrez F, Cooper A, Johnson K (2008) Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environ Geol 53:1007–1022

    Google Scholar 

  • Haneberg WC, Cole WF, Kasali G (2009) High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bull Eng Geol Environ 68:263–276

    Google Scholar 

  • Harding DJ, Berghoff GS, County K (2000) Fault scarp detection beneath dense vegetation cover: Airborne lidar mapping of the Seattle fault zone, Bainbridge Island. Kitsap Public Utility District, Washington State

    Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS, Sherrod BL (2003) High-resolution lidar topography of the Puget Lowland, Washington. GSA Today 13:4–10

    Google Scholar 

  • Herrera G, Tomás R, Lopez-Sanchez JM, Delgado J, Mallorqui JJ, Duque S, Mulas J (2007) Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng Geol 90:148–159

    Google Scholar 

  • Hervas J, Barredo JI, Rosin PL, Pasuto A, Mantovani F, Silvano S (2003) Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54:63–75

    Google Scholar 

  • Hilley GE, Burgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304:1952–1955

    Google Scholar 

  • Hong S-H, Wdowinski S, Kim S-W, Won J-S (2010) Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR). Remote Sens Environ 114:2436–2447

    Google Scholar 

  • Hooper A, Zebker H, Segail P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.21029/22004GL021737

    Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13

    Google Scholar 

  • Horritt M, Bates P (2001) Effects of spatial resolution on a raster based model of flood flow. J Hydrol 253:239–249

    Google Scholar 

  • Imhoff ML, Vermillion C, Story MH, Choudhury AM, Gafoor A, Polcyn F (1987) Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data. Photogramm Eng Remote Sens 53:405–413

    Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2010) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Google Scholar 

  • Jones AF, Brewer PA, Johnstone E, Macklin MG (2007) High resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surf Proc Land 32:1574–1592

    Google Scholar 

  • Joyce KE, Glassey PJ, Dellow GD (2008) Methods for mapping landslides in New Zealand using satellite optical remote sensing. In: 14th Australasian remote sensing and photogrammetry conference, Darwin, Australia

  • Joyce KE, Belliss S, Samsonov S, McNeill S, Glassey PJ (2009a) A review of the status of satellite remote sensing image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr 33:183–207

    Google Scholar 

  • Joyce KE, Samsonov S, Manville V, Jongens R, Graettinger A, Cronin S (2009b) Remote sensing data types and techniques for lahar path detection: a case study at Mt Ruapehu, New Zealand. Remote Sens Environ 113:1778–1786

    Google Scholar 

  • Joyce KE, Dellow GD, Glassey PJ (2009b) Using remote sensing and spatial analysis to understand landslide distribution and dynamics in New Zealand. In: IEEE international geoscience and remote sensing symposium. Cape Town, South Africa

  • Joyce KE, Wright KC, Samonsov SV, Ambrosia VG (2009d) Remote sensing and the disaster management cycle. In: Jedlovec G (ed) Advances in geoscience and remote sensing. In-Tech Publishing, Vienna, pp 317–346

  • Kaab A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. Isprs J Photogramm Remote Sens 57:39–52

    Google Scholar 

  • Kemeny J, Turner K (2008) Ground-based LiDAR rock slope mapping and assessment. In: US Department of Transporation, Lakewood, Colorado

  • Kim S-W, Wdowinski S, Amelung F, Dixon TH, Won J-S (2013) Interferometric coherence analysis of the Everglades Wetlands, South Florida. In: IEEE transactions on geoscience and remote sensing (in press)

  • Klemas V (2011) Remote sensing techniques for studying coastal ecosystems: an overview. J Coast Res 27:2–17

    Google Scholar 

  • Klemas V (2012) Remote sensing of coastal and ocean currents: an overview. J Coast Res 282:576–586

    Google Scholar 

  • Klimchouk A (2002) Subsidence hazards in different types of karst: evolutionary and speleogenetic approach. Int J Speleol 31:5–18

    Google Scholar 

  • Kondo H, Toda S, Okumura K, Takada K, Chiba T (2008) A fault scarp in an urban area identified by LiDAR survey: a case study on the Itoigawa–Shizuoka Tectonic Line, central Japan. Geomorphology 101:731–739

    Google Scholar 

  • Kouchi K, Yamazaki F (2007) Characteristics of tsunami-affected areas in moderate-resolution satellite images. Geosci Remote Sens IEEE Trans 45:1650–1657

    Google Scholar 

  • Kumar KV, Martha TR, Roy PS (2006) Mapping damage in the Jammu and Kashmir caused by 8 October 2005 M-w 7.3 earthquake from the Cartosat-1 and Resourcesat-1 imagery. Int J Remote Sens 27:4449–4459

    Google Scholar 

  • Kumar A, Chingkhei RK, Dolendro T (2007) Tsunami damage assessment: a case study in Car Nicobar Island, India. Int J Remote Sens 28:2937–2959

    Google Scholar 

  • Lahousse T, Chang KT, Lin YH (2011) Landslide mapping with multi-scale object-based image analysis—a case study in the Baichi watershed, Taiwan. Nat Hazards Earth Syst Sci 11:2715–2726

    Google Scholar 

  • Lee JS, Pottier E (2009) Polarimetric radar imaging from basics to applications. CRC Press, Boca Raton

    Google Scholar 

  • Leprince S, Ayoub F, Klingert Y, Avouac JP (2007a) Co-registration of optically sensed images and correlation (COSI-Corr): an operational methodology for ground deformation measurements. In: IEEE, pp. 1943–1946

  • Leprince S, Barbot S, Ayoub F, Avouac JP (2007b) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. Geosci Remote Sens IEEE Trans 45:1529–1558

    Google Scholar 

  • Leprince S, Berthier E, Ayoub F, Delacourt C, Avouac J (2008) Monitoring Earth surface dynamics with optical imagery. EOS Trans Am Geophys Union 89:10

    Google Scholar 

  • Lewis AJ, Henderson FM, Holcomb DW (1998) Radar fundamentals: the geoscience perspective. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar. Wiley, New York, pp 131–181

    Google Scholar 

  • Li MC, Cheng L, Gong JY, Liu YX, Chen ZJ, Li FX, Chen G, Chen D, Song XG (2008) Post-earthquake assessment of building damage degree using LiDAR data and imagery. Sci China Ser E: Technol Sci 51:133–143

    Google Scholar 

  • Liu JG, Lee H, Pearson T (2004a) Detection of rapid erosion in SE Spain using ERS SAR interferometric coherence imagery. Proc SPIE Remote Sens Earth Sci Ocean Sea Ice Appl 3868:525–535

    Google Scholar 

  • Liu JG, Mason P, Hilton F, Lee H (2004b) Detection of rapid erosion in SE Spain: a GIS approach based on ERS SAR coherence imagery. Photogramm Eng Remote Sens 70:1179–1185

    Google Scholar 

  • Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. IEEE Geosci Remote Sens Lett 8:701–705

    Google Scholar 

  • Manyatsi AM, Ntshangase N (2008) Mapping of soil erosion using remotely sensed data in Zombodze South, Swaziland. Phys Chem Earth 33:800–806

    Google Scholar 

  • Marks K, Bates P (2000) Integration of high-resolution topographic data with floodplain flow models. Hydrol Process 14:2109–2122

    Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Google Scholar 

  • Martha TR, Kerle N, van Westen CJ, Jetten V, Kumar KV (2011) Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. Geosci Remote Sens IEEE Trans 49:4928–4943

    Google Scholar 

  • Mason DC, Cobby DM, Horritt MS, Bates PD (2003) Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrol Process 17:1711–1732

    Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth's surface. Rev Geophys 36(4):441–500. doi:10.1029/97RG03139

    Google Scholar 

  • Mazzotti S, Lambert A, Van der Koij M, Mainville A (2009) Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta. Geology 37:771–774

    Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331

    Google Scholar 

  • Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F (2011) Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens Environ 115:1743–1757

    Google Scholar 

  • Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1:6–43

    Google Scholar 

  • Navarro-Sanchez VD, Lopez-Sanchez JM, Vicente-Guijalba F (2010) A contribution of polarimetry to satellite differential SAR interferometry: increasing the number of pixel candidates. IEEE Geosci Remote Sens Lett 7:276–280

    Google Scholar 

  • Nazarenko DM, Martenson D, Rossignol S, Staples G (1995) RADARSAT image characteristics and application requirements. In: Record of the IEEE 1995 international radar conference, pp 351–355

  • Nichol J, Wong MS (2005a) Detection and interpretation of landslides using satellite images. Land Degrad Dev 16:243–255

    Google Scholar 

  • Nichol J, Wong MS (2005b) Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Int J Remote Sens 26:1913–1926

    Google Scholar 

  • Nichol JE, Shaker A, Wong MS (2006) Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology 76:68–75

    Google Scholar 

  • Nof RN, Baer G, Ziv A, Raz E, Atzori S, Salvi S (2013) Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology. doi:10.1130/G34505.1

  • O’Grady D, Leblanc M (2014) Radar mapping of broad-scale inundation: challenges and opportunities in Australia. Stoch Environ Res Risk Assess 28(1):29–38

    Google Scholar 

  • Oberstadler R, Honsch H, Hutch D (1997) Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Process 11:1415–1425

    Google Scholar 

  • Ormsby JP, Blanchard BJ, Blanchard AJ (1985) Detection of lowland flooding using active microwave systems. Photogramm Eng Remote Sens 51:317–328

    Google Scholar 

  • Ostir K, Veljanovski T, Podobnikar T, Stancic Z (2003) Application of satellite remote sensing in natural hazard management: the Mount Mangart landslide case study. Int J Remote Sens 24:3983–4002

    Google Scholar 

  • Ostrowski JA, Cheng P (2000) DEM extraction from stereo SAR satellite imagery. In: Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, vol 5. pp 2176–2178

  • Ouzounov D, Freund F (2004) Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res 33:268–273

    Google Scholar 

  • Pairman D, Belliss SE, McNeill SJ (1997) Terrain influences on SAR backscatter around Mt. Taranaki, New Zealand. IEEE Trans Geosci Remote Sens 35:924–932

    Google Scholar 

  • Papathanassiou KP, Cloude SR (2001) Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 39:2352–2363

    Google Scholar 

  • Perlock PA, González PJ, Tiampo KF, Rodríguez-Velasco G, Samsonov S, Fernández J (2008) Time evolution of deformation using time series of differential interferograms: application to La Palma Island (Canary Islands). Pure appl Geophys 165:1531–1554

    Google Scholar 

  • Prasannakumar V, Shiny R, Geetha N, Vijith H (2011) Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India. Environ Earth Sci 64(4):965–972

    Google Scholar 

  • Prentice C, Mann P, Crone A, Gold R, Hudnut K, Briggs R, Koehler R, Jean P (2010) Seismic hazard of the Enriquillo–Plantain Garden fault in Haiti inferred from palaeoseismology. Nat Geosci 3:789–793

    Google Scholar 

  • Quan S, Kvitek RG, Smith DP, Griggs GB (2013) Using vessel-based LIDAR to quantify coastal erosion during El Niño and Inter-El Niño Periods in Monterey Bay, California. J Coast Res 288:555–565

    Google Scholar 

  • Quigley M, Villamor P, Furlong K, Beavan J, Van Dissen R, Litchfield N, Stahl T, Duffy B, Bilderback E, Noble D (2010) Previously unknown fault shakes New Zealand’s South Island. EOS Trans 91:469–470

    Google Scholar 

  • Quigley M, Van Dissen R, Litchfield N, Villamor P, Duffy B, Barrell D, Furlong K, Stahl T, Bilderback E, Noble D (2011) Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: implications for fault rupture dynamics and seismic-hazard analysis. Geology 40:55–58

    Google Scholar 

  • Rathje EM, Adams BJ (2008) The role of remote sensing in earthquake science and engineering: opportunities and challenges. Earthq Spectra 24:471

    Google Scholar 

  • Rau JY, Chen LC, Liu JK, Wu TH (2007) Dynamics monitoring and disaster assessment for watershed management using time-series satellite images. IEEE Trans Geosci Remote Sens 45:1641–1649

    Google Scholar 

  • Reutebuch SE, McGaughey RJ, Andersen HE, Carson WW (2003) Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can J Remote Sens 29:527–535

    Google Scholar 

  • Richter A, Faust D, Mass HG (2013) Dune cliff erosion and beach width change at the northern and southern spits of Sylt detected with multi-temporal Lidar. CATENA 103:103–111

    Google Scholar 

  • Ritchie JC, Grissinger EH, Murphey JB, Garbrecht JD (1994) Measuring channel and gully cross-sections with an airborne laser altimeter. Hydrol Process 8:237–243

    Google Scholar 

  • Roemer H, Kaiser G, Sterr H, Ludwig R (2010) Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand. Nat Hazards Earth Syst Sci 10:729–745

    Google Scholar 

  • Rosin PL, Hervas J (2005) Remote sensing image thresholding methods for determining landslide activity. Int J Remote Sens 26:1075–1092

    Google Scholar 

  • Rott H, Nagler T (2006) The contribution of radar interferometry to the assessment of landslide hazards. Adv Space Res 37:710–719

    Google Scholar 

  • Samsonov S, d’Oreye N (2012) Multidimensional time series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys J Int 19:1095–1108

    Google Scholar 

  • Samsonov S, Tiampo K (2011) Polarization phase difference analysis for selection of persistent scatterers in SAR interferometry. IEEE Geosci Remote Sens Lett 8:331–335

    Google Scholar 

  • Samsonov S, Tiampo K, González PJ, Manville V, Jolly G (2010) Ground deformation occurring in the city of Auckland, New Zealand, and observed by Envisat interferometric synthetic aperture radar during 2003–2007. J Geophys Res 115

  • Samsonov S, Beavan J, Gonzalez PJ, Tiampo K, Fernandez J (2011a) Ground deformation in the Taupo Volcanic Zone, New Zealand, observed by ALOS PALSAR interferometry. Geophys J Int 187:147–160

    Google Scholar 

  • Samsonov S, van der Kooij M, Tiampo K (2011b) A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput Geosci 37:1083–1091

    Google Scholar 

  • Samsonov S, Gonzalez PJ, Tiampo K, d’Oreye N (2013) Spatio-temporal analysis of ground deformation occurring near Rice Lake, Saskatchewan, and observed by Radarsat-2 DInSAR during 2008–2011. Can J Remote Sens 39:27–33

    Google Scholar 

  • Sansosti E, Casu F, Manzo M, Lanari R (2010) Space-borne radar interferometry techniques for the generation of deformation time series: an advanced tool for Earth’s surface displacement analysis. Geophys Res Lett 37:L20305. doi:10.1029/2010GL044379

  • Schumann G, Matgen P, Cutler MEJ, Black A, Hoffmann L, Pfister L (2008) Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J Photogramm Remote Sens 63:283–296

    Google Scholar 

  • Seale LD, Florea LJ, Vacher H, Brinkmann R (2008) Using ALSM to map sinkholes in the urbanized covered karst of Pinellas County, Florida—1, methodological considerations. Environ Geol 54:995–1005

    Google Scholar 

  • Singhroy V (1995) SAR integrated techniques for geohazard assessment. Adv Space Res 15:67–78

    Google Scholar 

  • Singhroy V, Molch K (2004) Characterizing and monitoring rockslides from SAR techniques. Adv Space Res 33:290–295

    Google Scholar 

  • Singhroy V, Mattar KE, Gray AL (1998) Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv Space Res 21:465–476

    Google Scholar 

  • Strozzi T, Luckman A, Murray T, Wegmuller U, Werner C (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans Geosci Remote Sens 40

  • Strozzi T, Wegmuller U, Werner CL, Wiesmann A, Spreckels V (2003) JERS SAR interferometry for land subsidence monitoring. IEEE Trans Geosci Remote Sens 41(7):1702–1708. doi:10.1109/TGRS.2003.813273

    Google Scholar 

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote Sens Environ 115:2564–2577

    Google Scholar 

  • Tarolli P, Sofia G, Dalla Fontana G (2010) Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards. doi:10.1007/s11069-11010-19695-11062

  • Thoma DP, Gupta SC, Bauer ME, Kirchoff CE (2005) Airborne laser scanning for riverbank erosion assessment. Remote Sens Environ 95:493–501

    Google Scholar 

  • Tiampo KF, González PJ, Samsonov SS (2013) Results for aseismic creep on the Hayward fault using polarization persistent scatterer InSAR. Earth Planet Sci Lett 367:157–165

    Google Scholar 

  • Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. Isprs J Photogramm Remote Sens 59:185–198

    Google Scholar 

  • Trevisani S, Cavalli M, Marchi L (2009) Variogram maps from LiDAR data as fingerprints of surface morphology on scree slopes. Nat Hazards Earth Syst Sci 9:129–133

    Google Scholar 

  • Tsutsui K, Rokugawa S, Nakagawa H, Miyazaki S, Cheng CT, Shiraishi T, Yang SD (2007) Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery. IEEE Trans Geosci Remote Sens 45:1681–1696

    Google Scholar 

  • Vacher H, Seale LD, Florea LJ, Brinkmann R (2008) Using ALSM to map sinkholes in the urbanized covered karst of Pinellas County, Florida—2. Accuracy statistics. Environ Geol 54:1007–1015

    Google Scholar 

  • Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558

    Google Scholar 

  • Van Den Eeckhaut M, Kerle N, Poesen J, Hervás J (2012) Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 173–174:30–42

    Google Scholar 

  • van Zyl JJ (1989) Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans Geosci Remote Sens 27:36–45

    Google Scholar 

  • Voigt S, Kemper T, Riedlinger T, Kiefl R, Scholte K, Mehl H (2007) Satellite image analysis for disaster and crisis-management support. IEEE Trans Geosci Remote Sens 45:1520–1528

    Google Scholar 

  • Waite WP, MacDonald HC (1971) Vegetation penetration with K-band radars. IEEE Trans Geosci Remote Sens GE-9:147–155

    Google Scholar 

  • Waltham T, Bell FG, Culshaw M (2005) Sinkholes and subsidence. Springer, Berlin

    Google Scholar 

  • Wan S, Lei TS, Chou TY (2013) Optimized object-based image classification: development of landslide knowledge decision support system. Arabian J Geosci. doi:10.1007/s12517-013-0952-z

  • Warren WM, Wielchowsky CC (1973) Aerial remote sensing of carbonate terranes in Shelby County, Alabama. Ground Water 11:14–26

    Google Scholar 

  • Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic lidar to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30:64–76

    Google Scholar 

  • Wegmüller U, Werner CL (1996) Land applications using ERS-1/2 Tandem data. In: ‘Fringe 96’ workshop on ERS SAR interferometry. Zurich

  • Wegmüller U, Werner CL, Nüesch D, Borgeaud M (1995) Land-surface analysis using ERS-1 SAR interferometry. ESA Bull 81:30–37

    Google Scholar 

  • Whitworth MCZ, Giles DP, Murphy W (2005) Airborne remote sensing for landslide hazard assessment: a case study on the Jurassic escarpment slopes of Worcestershire, UK. Q J Eng Geol Hydrogeol 38:285–300

    Google Scholar 

  • Wikantika K, Sinaga A, Hadi F, Darmawan S (2007) Quick assessment on identification of damaged building and land-use changes in the post-tsunami disaster with a quick-look image of IKONOS and Quickbird (a case study in Meulaboh City, Aceh). Int J Remote Sens 28:3037–3044

    Google Scholar 

  • Wöppelmann G, Le Cozannet G, de Michele M, Raucoules D, Cazenave A, Garcin M, Hanson S, Marcos M, Santamaría-Gómez A (2013) Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? Geophys Res Lett 40(12):2953–2957

    Google Scholar 

  • Xu H, Dvorkin J, Nur A (2001) Linking oil production to surface subsidence from satellite radar interferometry. Geophys Res Lett 28:1307–1310

    Google Scholar 

  • Yang MD, Su TC, Hsu CH, Chang KC, Wu AM (2007) Mapping of the 26 December 2004 tsunami disaster by using FORMOSAT-2 images. Int J Remote Sens 28:3071–3091

    Google Scholar 

  • Yen J-Y, Chen K-S, Chang C-P, Boerner W-M (2008) Evaluation of earthquake potential and surface deformation by differential interferometry. Remote Sens Environ 112:782–795

    Google Scholar 

  • Zhou G, Xie M (2009) Coastal 3-D morphological change analysis using LiDAR series data: a case study of Assateague Island National Seashore. J Coast Res 252:435–447

    Google Scholar 

  • Zielke O, Arrowsmith JR, Ludwig LG, Akçiz SO (2010) Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault. Science 327:1119

    Google Scholar 

  • Zwenzner H, Voigt S (2009) Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrol Earth Syst Sci 13:567–576

    Google Scholar 

Download references

Acknowledgments

LiDAR data were acquired by NZ Aerial Mapping on behalf of Environment Canterbury (ECAN) and the Ministry for Civil Defence and Emergency Management (MCDEM). Funding for this project was provided by the South African Council for Geosciences in collaboration with CDU and GNS Science. The authors thank the many people with whom discussions on this topic have been held over the years, and in particular the very helpful comments received from the anonymous reviewers. RADARSAT-2 data were provided by the Canadian Space Agency. Some figures were plotted with the GMT and Gnuplot software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Joyce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyce, K.E., Samsonov, S.V., Levick, S.R. et al. Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data. Nat Hazards 73, 137–163 (2014). https://doi.org/10.1007/s11069-014-1122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1122-7

Keywords

Navigation