Abstract
Remote sensing data prove to be an effective resource for constructing a data-driven predictive model of mineral prospectivity. Nonetheless, existing deep learning models predominantly rely on neural networks that necessitate a substantial number of samples, posing a challenge during the early stages of exploration. In order to predict mineral prospectivity using remotely sensed data, this study introduced deep forest (DF), a non-neural network deep learning model. Mainly based on ASTER multispectral imagery supplemented by Sentinel-2 and geological data, gold ore in Hamissana area, NE Sudan was used to test the DF predictive model capability. In addition to four geological-based evidential layers, 20 remote sensing-based evidential layers were generated using remote sensing enhancing techniques, forming the predictor variables of the proposed model. The applicability of the DF was thoroughly examined including its accuracy for delineating prospective areas, sensitivity to amount of training samples, and adjustment of hyperparameters. The results demonstrate that DF model outperformed conventional machine learning models (i.e., support vector machine, artificial neural network, and random forest) with AUC of 0.964 and classification accuracy of 93.3%. Moreover, the sensitivity analysis demonstrated that the DF model can be trained with a limited number (i.e., < 15) of mineral occurrences. Therefore, the DF algorithm has great potential and proves to be a viable solution for data-driven prospectivity mapping, particularly in scenarios with data availability constraints.
Similar content being viewed by others
References
Abd El-Wahed, M., Zoheir, B., Pour, A. B., & Kamh, S. (2021). Shear-related gold ores in the Wadi Hodein Shear Belt, south eastern desert of Egypt: Analysis of remote sensing. Field and Structural Data. Minerals, 11(5), 474.
Abdelkareem, M., & Al-Arifi, N. (2021). Synergy of remote sensing data for exploring hydrothermal mineral resources using GIS-based fuzzy logic approach. Remote Sensing, 13(22), 4494.
Abedi, M., Norouzi, G.-H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.
Abedini, M., Ziaii, M., Timkin, T., & Pour, A. B. (2023). Machine learning (ML)-based copper mineralization prospectivity mapping (MPM) using mining geochemistry method and remote sensing satellite data. Remote Sensing, 15(15), 3708.
Ahmed, A. H. (2022). Mineral deposits and occurrences in the Arabian-Nubian shield. Springer.
Ali, A., & Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3), 199–208.
Badel, M., Angorani, S., & Shariat Panahi, M. (2011). The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers & Geosciences, 37(4), 530–540.
Bahrami, Y., Hassani, H., & Maghsoudi, A. (2018). Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran. Geosystem Engineering, 24(1), 18–30.
Barsi, Á., Kugler, Z., László, I., Szabó, G., & Abdulmutalib, H. M. (2018). Accuracy dimensions in remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–3, 61–67.
Bierlein, F. P., McKeag, S., Reynolds, N., Bargmann, C. J., Bullen, W., Murphy, F. C., Al-Athbah, H., Brauhart, C., Potma, W., Meffre, S., & McKnight, S. (2015). The Jebel Ohier deposit—a newly discovered porphyry copper–gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan. Mineralium Deposita, 51(6), 713–724.
Bolouki, S. M., Ramazi, H. R., Maghsoudi, A., Beiranvand Pour, A., & Sohrabi, G. (2019). A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran Area, NW Iran. Remote Sensing, 12(1), 105.
Bonham-Carter, G. (1994a). Geographic information systems for geoscientists: Modelling with GIS. Elsevier.
Bonham-Carter, G., & Chung, C. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Journal of the International Association for Mathematical Geology, 15, 25–45.
Bonham-Carter, G. F. (1994b). Geographic information systems for geoscientists: Modelling with GIS. Pergamon.
Breiman, L. (2001). Random forests. Machine Learning, 45(5), 5–32.
Brown, W. (2002). Artificial neural network: a new method for mineral prospectivity mapping. In U. o. W. Australia (Ed.).
Brown, W., Groves, D., & Gedeon, T. A. (2003). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12(3), 183–200.
Carranza, E. J. M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Elsevier.
Carranza, E. J. M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26(4), 379–410.
Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1–2), 117–132.
Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33(3–4), 536–558.
Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.
Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.
Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.
Chen, C., Dai, H., Liu, Y., & He, B. (2011). Mineral prospectivity mapping integrating multisource geology spatial data sets and logistic regression modelling. In The 2011 IEEE international conference on spatial data mining and geographic knowledge series (ICSDM), Fuzhou, China.
Cheng, Q. M., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27–35.
Crosta, A., De Souza Filho, C., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240.
El Khidir, S. O., & Babikir, I. A. (2013). Digital image processing and geospatial analysis of landsat 7 ETM+ for mineral exploration, Abidiya area, North Sudan. International Journal of Geomatics and Geosciences, 3(3), 645–658.
Forson, E. D., Wemegah, D. D., Hagan, G. B., Appiah, D., Addo-Wuver, F., Adjovu, I., Otchere, F. O., Mateso, S., Menyeh, A., & Amponsah, T. (2022). Data-driven multi-index overlay gold prospectivity mapping using geophysical and remote sensing datasets. Journal of African Earth Sciences, 190, 104504.
Fu, Y., Cheng, Q., Jing, L., Ye, B., & Fu, H. (2023). Mineral prospectivity mapping of porphyry copper deposits based on remote sensing imagery and geochemical data in the Duolong Ore District, Tibet. Remote Sensing, 15(2), 439.
Gewali, U. B., Monteiro, S. T., & Saber, E. (2018). Machine learning based hyperspectral image analysis: a survey. arXiv preprint https://arxiv.org/abs/1802.08701.
Hamimi, Z., Fowler, A.-R., Liégeois, J.-P., Collins, A., Abdelsalam, M. G., & Abd El-Wahed, M. (2021). The geology of the Arabian-Nubian Shield. Springer.
Harris, D., & Pan, G. (1999). Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109.
Harris, J., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M., Ayer, J., & Dahn, R. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—a case study: mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.
He, B., Chen, C., & Liu, Y. (2010). Gold resources potential assessment in eastern Kunlun Mountains of China combining weights-of-evidence model with GIS spatial analysis technique. Chinese Geographical Science, 20(5), 461–470.
He, L., Lyu, P., He, Z., Zhou, J., Hui, B., Ye, Y., Hu, H., Zeng, Y., & Xu, L. (2022). Identification of radioactive mineralized lithology and mineral prospectivity mapping based on remote sensing in high-latitude regions: a case study on the Narsaq Region of Greenland. Minerals, 12(6), 692.
Holloway, J., & Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sensing, 10(9), 1365.
Hubbard, B. E., & Crowley, J. K. (2005). Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment, 99(1–2), 173–186.
Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37(1–2), 59–72.
Johnson, P., Zoheir, B., Ghebreab, W., Stern, R., Barrie, C., & Hamer, R. (2017). Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield. South African Journal of Geology, 120(1), 63–76.
Kashani, S. B. M., Abedi, M., & Norouzi, G.-H. (2016). Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Science Informatics, 9(2), 167–181.
Li, D., Liu, Z., Armaghani, D. J., Xiao, P., & Zhou, J. (2022). Novel ensemble tree solution for rockburst prediction using deep forest. Mathematics, 10(5), 787.
Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., Zhou, T., Li, X., Ge, C., & Wu, B. (2020a). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China. Applied Geochemistry, 122, 104747.
Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2020b). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30(1), 27–38.
Loughlin, W. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.
Ma, P., Wu, Y., Li, Y., Guo, L., Jiang, H., Zhu, X., & Wu, X. (2022a). HW-forest: Deep forest with hashing screening and window screening. ACM Transactions on Knowledge Discovery from Data, 16(6), 1–24.
Ma, P., Wu, Y., Li, Y., Guo, L., & Li, Z. (2022b). DBC-Forest: Deep forest with binning confidence screening. Neurocomputing, 475, 112–122.
Magalhães, L. A., & Souza Filho, C. R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys in Geophysics, 33(2), 211–241.
Mahdevar, M. R., Ketabi, P., Saadatkhah, N., Rahnamarad, J., & Mohammadi, S. S. (2014). Application of ASTER SWIR data on detection of alteration zone in the Sheikhabad area, eastern Iran. Arabian Journal of Geosciences, 8(8), 5909–5919.
Mohamed, M. T. A., Al-Naimi, L. S., Mgbeojedo, T. I., & Agoha, C. C. (2021). Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, Northeast Sudan. Journal of Petroleum Exploration and Production, 11, 1123–1138.
Mohamed Taha, A. M., Xi, Y., He, Q., Hu, A., Wang, S., & Liu, X. (2023). Investigating the capabilities of various multispectral remote sensors data to map mineral prospectivity based on random forest predictive model: A case study for gold deposits in Hamissana Area. NE Sudan. Minerals, 13(1), 49.
Moore, F., Rastmanesh, F., Asadi, H., & Modabberi, S. (2008). Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data. International Journal of Remote Sensing, 29(10), 2851–2867.
Ngassam Mbianya, G., Ngnotue, T., Takodjou Wambo, J. D., Ganno, S., Pour, A. B., Ayonta Kenne, P., Fossi, D. H., & Wolf, I. D. (2021). Remote sensing satellite-based structural/alteration mapping for gold exploration in the Ketté goldfield, Eastern Cameroon. Journal of African Earth Sciences, 184, 104386.
Ninomiya, Y. (2003). A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data IGARSS 2003. In 2003 IEEE international geoscience and remote sensing symposium. proceedings (IEEE Cat. No.03CH37477)
Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.
Pang, M., Ting, K.-M., Zhao, P., & Zhou, Z.-H. (2018). Improving deep forest by confidence screening. In 2018 IEEE international conference on data mining (ICDM)
Parsa, M. (2021). A data augmentation approach to XGboost-based mineral potential mapping: An example of carbonate-hosted Zn Pb mineral systems of Western Iran. Journal of Geochemical Exploration, 228, 106811.
Perret, J., Feneyrol, J., Eglinger, A., André-Mayer, A.-S., Berthier, C., Ennaciri, A., & Bosc, R. (2021). Tectonic record and gold mineralization in the central part of the Neoproterozoic Keraf suture, Gabgaba district, NE Sudan. Journal of African Earth Sciences, 181, 104248.
Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12(3), 155–171.
Pour, A. B., & Hashim, M. (2011). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309–1323.
Pour, A. B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt. Iran. Advances in Space Research, 49(4), 753–769.
Pour, A. B., & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springerplus, 3(1), 130.
Pour, A. B., Hashim, M., Makoundi, C., & Zaw, K. (2016). Structural mapping of the Bentong-Raub Suture zone using PALSAR remote sensing data, Peninsular Malaysia: Implications for sediment-hosted/orogenic gold mineral systems exploration. Resource Geology, 66(4), 368–385.
Pour, A. B., Park, Y., Park, T.-Y.S., Hong, J. K., Hashim, M., Woo, J., & Ayoobi, I. (2018). Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Science, 16, 23–46.
Rajan Girija, R., & Mayappan, S. (2019). Mapping of mineral resources and lithological units: A review of remote sensing techniques. International Journal of Image and Data Fusion, 10(2), 79–106.
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.
Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354.
Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.
Senanayake, I. P., Kiem, A. S., Hancock, G. R., Metelka, V., Folkes, C. B., Blevin, P. L., & Budd, A. R. (2023). A spatial data-driven approach for mineral prospectivity mapping. Remote Sensing, 15(16), 4074.
Shirmard, H., Farahbakhsh, E., Müller, R. D., & Chandra, R. (2022). A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268, 112750.
Silva dos Santos, V., Gloaguen, E., Hector Abud Louro, V., & Blouin, M. (2022). Machine learning methods for quantifying uncertainty in prospectivity mapping of magmatic-hydrothermal gold deposits: A case study from Juruena Mineral Province, Northern Mato Grosso, Brazil. Minerals, 12(8), 941.
Son, Y.-S., Lee, G., Lee, B. H., Kim, N., Koh, S.-M., Kim, K.-E., & Cho, S.-J. (2022). Application of ASTER data for differentiating carbonate minerals and evaluating MgO content of magnesite in the Jiao-Liao-Ji Belt, North China Craton. Remote Sensing, 14(1), 181.
Su, R., Liu, X., Wei, L., & Zou, Q. (2019). Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods, 166, 91–102.
Sun, L., Mo, Z., Yan, F., Xia, L., Shan, F., Ding, Z., Song, B., Gao, W., Shao, W., Shi, F., Yuan, H., Jiang, H., Wu, D., Wei, Y., Gao, Y., Sui, H., Zhang, D., & Shen, D. (2020a). Adaptive feature selection guided deep forest for COVID-19 classification with chest CT. IEEE Journal of Biomedical and Health Informatics, 24(10), 2798–2805.
Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.
Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020b). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province. China. Minerals, 10(2), 102.
Tanaka, S., Tsuru, H., Someno, K., & Yamaguchi, Y. (2019). Identification of alteration minerals from unstable reflectance spectra using a deep learning method. Geosciences, 9(5), 195.
van der Meer, F. D., van der Werff, H. M. A., & van Ruitenbeek, F. J. A. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124–133.
Vapnik, V. (1999). The nature of statistical learning theory. Springer.
Xi, Y., Mohamed Taha, A. M., Hu, A., & Liu, X. (2022). Accuracy comparison of various remote sensing data in lithological classification based on random forest algorithm. Geocarto International, 37(26), 14451–14479.
Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P., & Liu, H. (2021). Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area. Gansu. Ore Geology Reviews, 138, 104316.
Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.
Yu, Z., Liu, B., Xie, M., Wu, Y., Kong, Y., Li, C., Chen, G., Gao, Y., Zha, S., Zhang, H., Wang, L., & Tang, R. (2022). 3D mineral prospectivity mapping of Zaozigou Gold Deposit, West Qinling, China: Deep learning-based mineral prediction. Minerals, 12(11), 1382.
Zeinelabdein, K. A. E., & Nadi, A. H. H. E. (2014). The use of Landsat 8 OLI image for the delineation of gossanic ridges in the Red Sea Hills of NE Sudan. American Journal of Earth Sciences, 1(3), 62–67.
Zeinelabdein, K. E., & Albiely, A. (2008). Ratio image processing techniques: A prospecting tool for mineral deposits, Red Sea Hills, NE Sudan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1295–1298.
Zhang, C., Yi, M., Ye, F., Xu, Q., Li, X., & Gan, Q. (2022). Application and evaluation of deep neural networks for airborne hyperspectral remote sensing mineral mapping: A case study of the Baiyanghe Uranium Deposit in Northwestern Xinjiang, China. Remote Sensing, 14(20), 5122.
Zhang, L., Sun, H., Rao, Z., & Ji, H. (2020). Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229, 117973.
Zhang, S. E., Nwaila, G. T., Agard, S., Bourdeau, J. E., Carranza, E. J. M., & Ghorbani, Y. (2023). Big geochemical data through remote sensing for dynamic mineral resource monitoring in tailing storage facilities. Artificial Intelligence in Geosciences, 4, 137–149.
Zhang, T., Yi, G., Li, H., Wang, Z., Tang, J., Zhong, K., Li, Y., Wang, Q., & Bie, X. (2016). Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sensing, 8(11), 890.
Zhao, K., Xu, Z., Zhang, T. Z., Tang, Y., & Yan, M. (2021). Simplified deep forest model based just-in-time defect prediction for android mobile apps. IEEE Transactions on Reliability, 70(2), 848–859.
Zhou, Z.-H., & Feng, J. (2019). Deep forest. National Science Review, 6(1), 74–86.
Zhou, Z.-H., & Liu, X.-Y. (2005). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on knowledge and data engineering, 18(1), 63–77.
Zoheir, B., El-Wahed, M. A., Pour, A. B., & Abdelnasser, A. (2019). Orogenic gold in transpression and transtension zones: Field and remote sensing studies of the Barramiya-Mueilha Sector. Egypt. Remote Sensing, 11(18), 2122.
Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.
Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.
Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1–14.
Acknowledgments
We express our gratitude to the editors and anonymous reviewers for their insightful feedback on how to make our work better. The funding for this study was provided by the National Natural Science Foundation of China and the Science and Technology Strategic Prospecting Project of Guizhou Province.
Funding
The National Natural Science Foundation of China (42372345, 42172333) and the Guizhou Province's Science and Technology Strategic Prospecting Project ([2022] ZD003) provided funding for this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors have no known conflicts of interest to declare associated with this publication.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mohamed Taha, A.M., Liu, G., Chen, Q. et al. Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model. Nat Resour Res 33, 2407–2431 (2024). https://doi.org/10.1007/s11053-024-10387-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11053-024-10387-5