Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Remote sensing data prove to be an effective resource for constructing a data-driven predictive model of mineral prospectivity. Nonetheless, existing deep learning models predominantly rely on neural networks that necessitate a substantial number of samples, posing a challenge during the early stages of exploration. In order to predict mineral prospectivity using remotely sensed data, this study introduced deep forest (DF), a non-neural network deep learning model. Mainly based on ASTER multispectral imagery supplemented by Sentinel-2 and geological data, gold ore in Hamissana area, NE Sudan was used to test the DF predictive model capability. In addition to four geological-based evidential layers, 20 remote sensing-based evidential layers were generated using remote sensing enhancing techniques, forming the predictor variables of the proposed model. The applicability of the DF was thoroughly examined including its accuracy for delineating prospective areas, sensitivity to amount of training samples, and adjustment of hyperparameters. The results demonstrate that DF model outperformed conventional machine learning models (i.e., support vector machine, artificial neural network, and random forest) with AUC of 0.964 and classification accuracy of 93.3%. Moreover, the sensitivity analysis demonstrated that the DF model can be trained with a limited number (i.e., < 15) of mineral occurrences. Therefore, the DF algorithm has great potential and proves to be a viable solution for data-driven prospectivity mapping, particularly in scenarios with data availability constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abd El-Wahed, M., Zoheir, B., Pour, A. B., & Kamh, S. (2021). Shear-related gold ores in the Wadi Hodein Shear Belt, south eastern desert of Egypt: Analysis of remote sensing. Field and Structural Data. Minerals, 11(5), 474.

    Google Scholar 

  • Abdelkareem, M., & Al-Arifi, N. (2021). Synergy of remote sensing data for exploring hydrothermal mineral resources using GIS-based fuzzy logic approach. Remote Sensing, 13(22), 4494.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G.-H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.

    Article  Google Scholar 

  • Abedini, M., Ziaii, M., Timkin, T., & Pour, A. B. (2023). Machine learning (ML)-based copper mineralization prospectivity mapping (MPM) using mining geochemistry method and remote sensing satellite data. Remote Sensing, 15(15), 3708.

    Article  Google Scholar 

  • Ahmed, A. H. (2022). Mineral deposits and occurrences in the Arabian-Nubian shield. Springer.

    Book  Google Scholar 

  • Ali, A., & Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3), 199–208.

    Article  Google Scholar 

  • Badel, M., Angorani, S., & Shariat Panahi, M. (2011). The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers & Geosciences, 37(4), 530–540.

    Article  CAS  Google Scholar 

  • Bahrami, Y., Hassani, H., & Maghsoudi, A. (2018). Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran. Geosystem Engineering, 24(1), 18–30.

    Article  Google Scholar 

  • Barsi, Á., Kugler, Z., László, I., Szabó, G., & Abdulmutalib, H. M. (2018). Accuracy dimensions in remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–3, 61–67.

    Article  Google Scholar 

  • Bierlein, F. P., McKeag, S., Reynolds, N., Bargmann, C. J., Bullen, W., Murphy, F. C., Al-Athbah, H., Brauhart, C., Potma, W., Meffre, S., & McKnight, S. (2015). The Jebel Ohier deposit—a newly discovered porphyry copper–gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan. Mineralium Deposita, 51(6), 713–724.

    Article  Google Scholar 

  • Bolouki, S. M., Ramazi, H. R., Maghsoudi, A., Beiranvand Pour, A., & Sohrabi, G. (2019). A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran Area, NW Iran. Remote Sensing, 12(1), 105.

    Article  Google Scholar 

  • Bonham-Carter, G. (1994a). Geographic information systems for geoscientists: Modelling with GIS. Elsevier.

    Google Scholar 

  • Bonham-Carter, G., & Chung, C. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Journal of the International Association for Mathematical Geology, 15, 25–45.

    Article  CAS  Google Scholar 

  • Bonham-Carter, G. F. (1994b). Geographic information systems for geoscientists: Modelling with GIS. Pergamon.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(5), 5–32.

    Article  Google Scholar 

  • Brown, W. (2002). Artificial neural network: a new method for mineral prospectivity mapping. In U. o. W. Australia (Ed.).

  • Brown, W., Groves, D., & Gedeon, T. A. (2003). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12(3), 183–200.

    Article  CAS  Google Scholar 

  • Carranza, E. J. M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Elsevier.

    Book  Google Scholar 

  • Carranza, E. J. M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26(4), 379–410.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1–2), 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33(3–4), 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  CAS  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.

    Article  CAS  Google Scholar 

  • Chen, C., Dai, H., Liu, Y., & He, B. (2011). Mineral prospectivity mapping integrating multisource geology spatial data sets and logistic regression modelling. In The 2011 IEEE international conference on spatial data mining and geographic knowledge series (ICSDM), Fuzhou, China.

  • Cheng, Q. M., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27–35.

    Article  CAS  Google Scholar 

  • Crosta, A., De Souza Filho, C., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240.

    Article  Google Scholar 

  • El Khidir, S. O., & Babikir, I. A. (2013). Digital image processing and geospatial analysis of landsat 7 ETM+ for mineral exploration, Abidiya area, North Sudan. International Journal of Geomatics and Geosciences, 3(3), 645–658.

    Google Scholar 

  • Forson, E. D., Wemegah, D. D., Hagan, G. B., Appiah, D., Addo-Wuver, F., Adjovu, I., Otchere, F. O., Mateso, S., Menyeh, A., & Amponsah, T. (2022). Data-driven multi-index overlay gold prospectivity mapping using geophysical and remote sensing datasets. Journal of African Earth Sciences, 190, 104504.

    Article  CAS  Google Scholar 

  • Fu, Y., Cheng, Q., Jing, L., Ye, B., & Fu, H. (2023). Mineral prospectivity mapping of porphyry copper deposits based on remote sensing imagery and geochemical data in the Duolong Ore District, Tibet. Remote Sensing, 15(2), 439.

    Article  Google Scholar 

  • Gewali, U. B., Monteiro, S. T., & Saber, E. (2018). Machine learning based hyperspectral image analysis: a survey. arXiv preprint https://arxiv.org/abs/1802.08701.

  • Hamimi, Z., Fowler, A.-R., Liégeois, J.-P., Collins, A., Abdelsalam, M. G., & Abd El-Wahed, M. (2021). The geology of the Arabian-Nubian Shield. Springer.

    Book  Google Scholar 

  • Harris, D., & Pan, G. (1999). Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109.

    Article  Google Scholar 

  • Harris, J., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M., Ayer, J., & Dahn, R. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—a case study: mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  CAS  Google Scholar 

  • He, B., Chen, C., & Liu, Y. (2010). Gold resources potential assessment in eastern Kunlun Mountains of China combining weights-of-evidence model with GIS spatial analysis technique. Chinese Geographical Science, 20(5), 461–470.

    Article  Google Scholar 

  • He, L., Lyu, P., He, Z., Zhou, J., Hui, B., Ye, Y., Hu, H., Zeng, Y., & Xu, L. (2022). Identification of radioactive mineralized lithology and mineral prospectivity mapping based on remote sensing in high-latitude regions: a case study on the Narsaq Region of Greenland. Minerals, 12(6), 692.

    Article  CAS  Google Scholar 

  • Holloway, J., & Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sensing, 10(9), 1365.

    Article  Google Scholar 

  • Hubbard, B. E., & Crowley, J. K. (2005). Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing of Environment, 99(1–2), 173–186.

    Article  Google Scholar 

  • Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37(1–2), 59–72.

    Article  CAS  Google Scholar 

  • Johnson, P., Zoheir, B., Ghebreab, W., Stern, R., Barrie, C., & Hamer, R. (2017). Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield. South African Journal of Geology, 120(1), 63–76.

    Article  CAS  Google Scholar 

  • Kashani, S. B. M., Abedi, M., & Norouzi, G.-H. (2016). Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Science Informatics, 9(2), 167–181.

    Article  Google Scholar 

  • Li, D., Liu, Z., Armaghani, D. J., Xiao, P., & Zhou, J. (2022). Novel ensemble tree solution for rockburst prediction using deep forest. Mathematics, 10(5), 787.

    Article  Google Scholar 

  • Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., Zhou, T., Li, X., Ge, C., & Wu, B. (2020a). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China. Applied Geochemistry, 122, 104747.

    Article  CAS  Google Scholar 

  • Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2020b). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30(1), 27–38.

    Article  CAS  Google Scholar 

  • Loughlin, W. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.

    Google Scholar 

  • Ma, P., Wu, Y., Li, Y., Guo, L., Jiang, H., Zhu, X., & Wu, X. (2022a). HW-forest: Deep forest with hashing screening and window screening. ACM Transactions on Knowledge Discovery from Data, 16(6), 1–24.

    Article  Google Scholar 

  • Ma, P., Wu, Y., Li, Y., Guo, L., & Li, Z. (2022b). DBC-Forest: Deep forest with binning confidence screening. Neurocomputing, 475, 112–122.

    Article  Google Scholar 

  • Magalhães, L. A., & Souza Filho, C. R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys in Geophysics, 33(2), 211–241.

    Article  Google Scholar 

  • Mahdevar, M. R., Ketabi, P., Saadatkhah, N., Rahnamarad, J., & Mohammadi, S. S. (2014). Application of ASTER SWIR data on detection of alteration zone in the Sheikhabad area, eastern Iran. Arabian Journal of Geosciences, 8(8), 5909–5919.

    Article  Google Scholar 

  • Mohamed, M. T. A., Al-Naimi, L. S., Mgbeojedo, T. I., & Agoha, C. C. (2021). Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, Northeast Sudan. Journal of Petroleum Exploration and Production, 11, 1123–1138.

    Article  CAS  Google Scholar 

  • Mohamed Taha, A. M., Xi, Y., He, Q., Hu, A., Wang, S., & Liu, X. (2023). Investigating the capabilities of various multispectral remote sensors data to map mineral prospectivity based on random forest predictive model: A case study for gold deposits in Hamissana Area. NE Sudan. Minerals, 13(1), 49.

    CAS  Google Scholar 

  • Moore, F., Rastmanesh, F., Asadi, H., & Modabberi, S. (2008). Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data. International Journal of Remote Sensing, 29(10), 2851–2867.

    Article  Google Scholar 

  • Ngassam Mbianya, G., Ngnotue, T., Takodjou Wambo, J. D., Ganno, S., Pour, A. B., Ayonta Kenne, P., Fossi, D. H., & Wolf, I. D. (2021). Remote sensing satellite-based structural/alteration mapping for gold exploration in the Ketté goldfield, Eastern Cameroon. Journal of African Earth Sciences, 184, 104386.

    Article  Google Scholar 

  • Ninomiya, Y. (2003). A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data IGARSS 2003. In 2003 IEEE international geoscience and remote sensing symposium. proceedings (IEEE Cat. No.03CH37477)

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Pang, M., Ting, K.-M., Zhao, P., & Zhou, Z.-H. (2018). Improving deep forest by confidence screening. In 2018 IEEE international conference on data mining (ICDM)

  • Parsa, M. (2021). A data augmentation approach to XGboost-based mineral potential mapping: An example of carbonate-hosted Zn Pb mineral systems of Western Iran. Journal of Geochemical Exploration, 228, 106811.

    Article  CAS  Google Scholar 

  • Perret, J., Feneyrol, J., Eglinger, A., André-Mayer, A.-S., Berthier, C., Ennaciri, A., & Bosc, R. (2021). Tectonic record and gold mineralization in the central part of the Neoproterozoic Keraf suture, Gabgaba district, NE Sudan. Journal of African Earth Sciences, 181, 104248.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12(3), 155–171.

    Article  CAS  Google Scholar 

  • Pour, A. B., & Hashim, M. (2011). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309–1323.

    Article  Google Scholar 

  • Pour, A. B., & Hashim, M. (2012). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt. Iran. Advances in Space Research, 49(4), 753–769.

    Article  CAS  Google Scholar 

  • Pour, A. B., & Hashim, M. (2014). ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springerplus, 3(1), 130.

    Article  Google Scholar 

  • Pour, A. B., Hashim, M., Makoundi, C., & Zaw, K. (2016). Structural mapping of the Bentong-Raub Suture zone using PALSAR remote sensing data, Peninsular Malaysia: Implications for sediment-hosted/orogenic gold mineral systems exploration. Resource Geology, 66(4), 368–385.

    Article  CAS  Google Scholar 

  • Pour, A. B., Park, Y., Park, T.-Y.S., Hong, J. K., Hashim, M., Woo, J., & Ayoobi, I. (2018). Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Science, 16, 23–46.

    Article  Google Scholar 

  • Rajan Girija, R., & Mayappan, S. (2019). Mapping of mineral resources and lithological units: A review of remote sensing techniques. International Journal of Image and Data Fusion, 10(2), 79–106.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354.

    Article  Google Scholar 

  • Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.

    Article  Google Scholar 

  • Senanayake, I. P., Kiem, A. S., Hancock, G. R., Metelka, V., Folkes, C. B., Blevin, P. L., & Budd, A. R. (2023). A spatial data-driven approach for mineral prospectivity mapping. Remote Sensing, 15(16), 4074.

    Article  Google Scholar 

  • Shirmard, H., Farahbakhsh, E., Müller, R. D., & Chandra, R. (2022). A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268, 112750.

    Article  Google Scholar 

  • Silva dos Santos, V., Gloaguen, E., Hector Abud Louro, V., & Blouin, M. (2022). Machine learning methods for quantifying uncertainty in prospectivity mapping of magmatic-hydrothermal gold deposits: A case study from Juruena Mineral Province, Northern Mato Grosso, Brazil. Minerals, 12(8), 941.

    Article  CAS  Google Scholar 

  • Son, Y.-S., Lee, G., Lee, B. H., Kim, N., Koh, S.-M., Kim, K.-E., & Cho, S.-J. (2022). Application of ASTER data for differentiating carbonate minerals and evaluating MgO content of magnesite in the Jiao-Liao-Ji Belt, North China Craton. Remote Sensing, 14(1), 181.

    Article  Google Scholar 

  • Su, R., Liu, X., Wei, L., & Zou, Q. (2019). Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods, 166, 91–102.

    Article  CAS  Google Scholar 

  • Sun, L., Mo, Z., Yan, F., Xia, L., Shan, F., Ding, Z., Song, B., Gao, W., Shao, W., Shi, F., Yuan, H., Jiang, H., Wu, D., Wei, Y., Gao, Y., Sui, H., Zhang, D., & Shen, D. (2020a). Adaptive feature selection guided deep forest for COVID-19 classification with chest CT. IEEE Journal of Biomedical and Health Informatics, 24(10), 2798–2805.

    Article  Google Scholar 

  • Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.

    Article  Google Scholar 

  • Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020b). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province. China. Minerals, 10(2), 102.

    Google Scholar 

  • Tanaka, S., Tsuru, H., Someno, K., & Yamaguchi, Y. (2019). Identification of alteration minerals from unstable reflectance spectra using a deep learning method. Geosciences, 9(5), 195.

    Article  CAS  Google Scholar 

  • van der Meer, F. D., van der Werff, H. M. A., & van Ruitenbeek, F. J. A. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124–133.

    Article  Google Scholar 

  • Vapnik, V. (1999). The nature of statistical learning theory. Springer.

    Google Scholar 

  • Xi, Y., Mohamed Taha, A. M., Hu, A., & Liu, X. (2022). Accuracy comparison of various remote sensing data in lithological classification based on random forest algorithm. Geocarto International, 37(26), 14451–14479.

    Article  Google Scholar 

  • Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P., & Liu, H. (2021). Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area. Gansu. Ore Geology Reviews, 138, 104316.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  CAS  Google Scholar 

  • Yu, Z., Liu, B., Xie, M., Wu, Y., Kong, Y., Li, C., Chen, G., Gao, Y., Zha, S., Zhang, H., Wang, L., & Tang, R. (2022). 3D mineral prospectivity mapping of Zaozigou Gold Deposit, West Qinling, China: Deep learning-based mineral prediction. Minerals, 12(11), 1382.

    Article  CAS  Google Scholar 

  • Zeinelabdein, K. A. E., & Nadi, A. H. H. E. (2014). The use of Landsat 8 OLI image for the delineation of gossanic ridges in the Red Sea Hills of NE Sudan. American Journal of Earth Sciences, 1(3), 62–67.

    Google Scholar 

  • Zeinelabdein, K. E., & Albiely, A. (2008). Ratio image processing techniques: A prospecting tool for mineral deposits, Red Sea Hills, NE Sudan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1295–1298.

    Google Scholar 

  • Zhang, C., Yi, M., Ye, F., Xu, Q., Li, X., & Gan, Q. (2022). Application and evaluation of deep neural networks for airborne hyperspectral remote sensing mineral mapping: A case study of the Baiyanghe Uranium Deposit in Northwestern Xinjiang, China. Remote Sensing, 14(20), 5122.

    Article  Google Scholar 

  • Zhang, L., Sun, H., Rao, Z., & Ji, H. (2020). Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229, 117973.

    Article  CAS  Google Scholar 

  • Zhang, S. E., Nwaila, G. T., Agard, S., Bourdeau, J. E., Carranza, E. J. M., & Ghorbani, Y. (2023). Big geochemical data through remote sensing for dynamic mineral resource monitoring in tailing storage facilities. Artificial Intelligence in Geosciences, 4, 137–149.

    Article  Google Scholar 

  • Zhang, T., Yi, G., Li, H., Wang, Z., Tang, J., Zhong, K., Li, Y., Wang, Q., & Bie, X. (2016). Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sensing, 8(11), 890.

    Article  Google Scholar 

  • Zhao, K., Xu, Z., Zhang, T. Z., Tang, Y., & Yan, M. (2021). Simplified deep forest model based just-in-time defect prediction for android mobile apps. IEEE Transactions on Reliability, 70(2), 848–859.

    Article  Google Scholar 

  • Zhou, Z.-H., & Feng, J. (2019). Deep forest. National Science Review, 6(1), 74–86.

    Article  Google Scholar 

  • Zhou, Z.-H., & Liu, X.-Y. (2005). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on knowledge and data engineering, 18(1), 63–77.

    Article  Google Scholar 

  • Zoheir, B., El-Wahed, M. A., Pour, A. B., & Abdelnasser, A. (2019). Orogenic gold in transpression and transtension zones: Field and remote sensing studies of the Barramiya-Mueilha Sector. Egypt. Remote Sensing, 11(18), 2122.

    Article  Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  CAS  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1–14.

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the editors and anonymous reviewers for their insightful feedback on how to make our work better. The funding for this study was provided by the National Natural Science Foundation of China and the Science and Technology Strategic Prospecting Project of Guizhou Province.

Funding

The National Natural Science Foundation of China (42372345, 42172333) and the Guizhou Province's Science and Technology Strategic Prospecting Project ([2022] ZD003) provided funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Conflict of Interest

The authors have no known conflicts of interest to declare associated with this publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed Taha, A.M., Liu, G., Chen, Q. et al. Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model. Nat Resour Res 33, 2407–2431 (2024). https://doi.org/10.1007/s11053-024-10387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-024-10387-5

Keywords

Navigation