Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of Potential Methods

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Research on processing geochemical data and identifying geochemical anomalies has made important progress in recent decades. Fractal/multi-fractal models, compositional data analysis, and machine learning (ML) are three widely used techniques in the field of geochemical data processing. In recent years, ML has been applied to model the complex and unknown multivariate geochemical distribution and extract meaningful elemental associations related to mineralization or environmental pollution. It is expected that ML will have a more significant role in geochemical mapping with the development of big data science and artificial intelligence in the near future. In this study, state-of-the-art applications of ML in identifying geochemical anomalies were reviewed, and the advantages and disadvantages of ML for geochemical prospecting were investigated. More applications are needed to demonstrate the advantage of ML in solving complex problems in the geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.

    Article  Google Scholar 

  • Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1, 39–50.

    Article  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman & Hall.

    Book  Google Scholar 

  • Baykan, N. A., & Yılmaz, N. (2010). Mineral identification using color spaces and artificial neural networks. Computers & Geosciences, 36, 91–97.

    Article  Google Scholar 

  • Behnia, P. (2007). Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran. Natural Resources Research, 16, 147–155.

    Article  Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2, 1–127.

    Article  Google Scholar 

  • Beucher, A., Österholm, P., Martinkauppi, A., Edén, P., & Fröjdö, S. (2013). Artificial neural network for acid sulfate soil mapping: Application to the Sirppujoki River catchment area, south-western Finland. Journal of Geochemical Exploration, 125, 46–55.

    Article  Google Scholar 

  • Bougrain, L., Gonzalez, M., Bouchot, V., Cassard, D., Lips, A. L. W., Alexandre, F., et al. (2003). Knowledge recovery for continental-scale mineral exploration by neural networks. Natural Resources Research, 12, 173–181.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., & Groves, D. I. (2003a). Use of noise to augment training data: a neural network method of mineral–potential mapping in regions of limited known deposit examples. Natural Resources Research, 12, 141–152.

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.

    Article  Google Scholar 

  • Brown, W. M., Groves, D. I., & Gedeon, T. D. (2003b). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12, 183–200.

    Article  Google Scholar 

  • Bucciant, A., & Zuo, R. (2016). Weathering reactions and isometric log-ratio coordinates: Do they speak to each other? Applied Geochemistry, 75, 189–199.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2010). Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365–381.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Article  Google Scholar 

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Article  Google Scholar 

  • Chen, C., He, B., & Zeng, Z. (2014a). A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China. Earth Science Informatics, 7, 13–24.

    Article  Google Scholar 

  • Chen, Y., Lu, L., & Li, X. (2014b). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56–63.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017a). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017b). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis. doi:10.1144/geochem2016-024.

    Google Scholar 

  • Chen, X., Zheng, Y., Xu, R., Wang, H., Jiang, X., Yan, H., et al. (2016). Application of classical statistics and multifractals to delineate Au mineralization-related geochemical anomalies from stream sediment data: a case study in Xinghai-Zeku, Qinghai, China. Geochemistry: Exploration, Environment, Analysis, 6, 253–264.

    Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.

    Article  Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43–51.

    Article  Google Scholar 

  • Cox, D. R., & Snell, E. J. (1989). Analysis of binary data. Boca Raton: CRC Press.

    Google Scholar 

  • Cracknell, M. J., & Reading, A. M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33.

    Article  Google Scholar 

  • Daneshfar, B., Desrochers, A., & Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15, 129–149.

    Article  Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & BarceloVidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407, 6100–6108.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Gonbadi, A. B., Tabatabaei, S. H., & Carranza, E. J. M. (2015). Supervised geochemical anomaly detection by pattern recognition. Journal of Geochemical Exploration, 157, 81–91.

    Article  Google Scholar 

  • Grunsky, E. C., De Caritat, P., & Mueller, U. A. (2017). Using surface regolith geochemistry to map the major crustal blocks of the Australian continent. Gondwana Research. doi:10.1016/j.gr.2017.02.011.

    Google Scholar 

  • Grunsky, E. C., & Smee, B. W. (1999). The differentiation of soil types and mineralization from multi-element geochemistry using multivariate methods and digital topography. Journal of Geochemical Exploration, 67, 287–299.

    Article  Google Scholar 

  • Harris, D., & Pan, G. (1999). Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109.

    Article  Google Scholar 

  • Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  Google Scholar 

  • Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12, 241–255.

    Article  Google Scholar 

  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 100–108.

    Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504–507.

    Article  Google Scholar 

  • Huang, J., & Zhao, P. (2015). Application of a multi-fractal model for identification of Cu, Au and Zn anomalies in Western Yunnan, Southwestern China. Geochemistry: Exploration, Environment, Analysis, 15, 54–61.

    Article  Google Scholar 

  • Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61.

    Article  Google Scholar 

  • Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1–6.

    Article  Google Scholar 

  • Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.

    Article  Google Scholar 

  • McKinley, J. M., Hron, K., Grunsky, E. C., Reimann, C., De Caritat, P., Filzmoser, P., et al. (2016). The single component geochemical map: Fact or fiction? Journal of Geochemical Exploration, 162, 16–28.

    Article  Google Scholar 

  • Mejía-Herrera, P., Royer, J. J., Caumon, G., & Cheilletz, A. (2015). Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. Natural Resources Research, 24, 275–290.

    Article  Google Scholar 

  • Menard, S. (2001). Applied logistic regression analysis (2nd ed.). Thousand Oaks, CA: Sage Publication.

    Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.

    Article  Google Scholar 

  • Nykänen, V., & Ojala, V. J. (2007). Spatial analysis techniques as successful mineral-potential mapping tools for orogenic gold deposits in the Northern Fennoscandian Shield, Finland. Natural Resources Research, 16, 85–92.

    Article  Google Scholar 

  • O’Brien, J. J., Spry, P. G., Nettleton, D., Xu, R., & Teale, G. S. (2015). Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia. Journal of Geochemical Exploration, 149, 74–86.

    Article  Google Scholar 

  • Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: a case study of Korea. Natural Resources Research, 19, 103–124.

    Article  Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference by Judea Pearl (p. 552). San Mateo, CA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Porwal, A., & Carranza, E. J. M. (2008). Classifiers for modelling of mineral potential. In O. Pourret, P. Naïm, & B. Marcot (Eds.), Bayesian networks: A practical guide to applications (pp. 149–171). Chichester: John Wiley & Sons.

    Chapter  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1–16.

    Article  Google Scholar 

  • Raines, G. L., & Mihalasky, M. J. (2002). A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data. Natural Resources Research, 11, 241–248.

    Article  Google Scholar 

  • Reddy, R. K. T., & Bonham-Carter, G. F. (1991). A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba. Canadian Journal of Remote Sensing, 17, 191–200.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R (p. 343). Chichester: Wiley.

    Book  Google Scholar 

  • Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24, 1151–1156.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographic Information Science, 28, 1336–1354.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Article  Google Scholar 

  • Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River, NJ, USA: Prentice Hall.

    Google Scholar 

  • Sahoo, N. R., & Pandalai, H. S. (1999). Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski Schist Belt, Raichur, Karnataka, India—A case study. Natural Resources Research, 8, 233–250.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1999). A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 8, 287–298.

    Article  Google Scholar 

  • Skabar, A. A. (2005). Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research, 14, 109–123.

    Article  Google Scholar 

  • Skabar, A. A. (2007). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451.

    Article  Google Scholar 

  • Thompson, S., Fueten, F., & Bockus, D. (2001). Mineral identification using artificial neural networks and the rotating polarizer stage. Computers & Geosciences, 27, 1081–1089.

    Article  Google Scholar 

  • Twarakavi, N. K. C., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.

    Article  Google Scholar 

  • Vapnik, V. (1995). Nature of statistical learning theory. New York: Wiley.

    Book  Google Scholar 

  • Xiong, Y., & Zuo, R. (2016a). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2016b). A comparative study of two modes for mapping felsic intrusions using geoinformatics. Applied Geochemistry, 75, 277–283.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2017). Effects of misclassification costs on mapping mineral prospectivity. Ore Geology Reviews, 82, 1–9.

    Article  Google Scholar 

  • Zaremotlagh, S., & Hezarkhani, A. (2017). The use of decision tree induction and artificial neural networks for recognizing the geochemical distribution patterns of LREE in the Choghart deposit, Central Iran. Journal of African Earth Sciences, 128, 37–46.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.

    Article  Google Scholar 

  • Zhao, J., Chen, S., & Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54–64.

    Article  Google Scholar 

  • Zhao, J., Chen, S., & Zuo, R. (2017). Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry: Exploration, Environment, Analysis. doi:10.1144/geochem2016-013.

    Google Scholar 

  • Zhou, L., Pan, S., Wang, J., & Vasilakos, A. S. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361.

    Article  Google Scholar 

  • Zuo, R. (2011). Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochemistry, 26, S271–S273.

    Article  Google Scholar 

  • Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, 170–176.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: a tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.

    Article  Google Scholar 

  • Zuo, R., Carranza, E. J. M., & Wang, J. (2016). Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158, 9–18.

    Article  Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identification local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 101, 225–235.

    Article  Google Scholar 

  • Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33–41.

    Article  Google Scholar 

  • Zuo, R., Wang, J., Chen, G., & Yang, M. (2015). Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration, 148, 12–24.

    Article  Google Scholar 

  • Zuo, R., Xia, Q., & Wang, H. (2013a). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry, 28, 202–211.

    Article  Google Scholar 

  • Zuo, R., Xia, Q., & Zhang, D. (2013b). A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry, 33, 165–172.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. John Carranza and two anonymous reviewers for their edits and comments that improved the manuscript. The author also thanks Yihui Xiong from the China University of Geosciences for preparing the figure and checking the references. This research benefited from the joint financial support from the National Natural Science Foundation of China (No. 41522206) and MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (MSFGPMR03-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, R. Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of Potential Methods. Nat Resour Res 26, 457–464 (2017). https://doi.org/10.1007/s11053-017-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9345-4

Keywords

Navigation