Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Improving prediction of skeletal growth problems for age evaluation using hand X-rays

  • 1238: Recent Advances in Biometrics Based on Biomedical Information
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Skeletal age estimation using X-ray images is a widely employed clinical method for identifying anomalies in bone growth in infants and newborns. Pediatric bone abnormalities can arise from a spectrum of conditions, including wounds, infections, or tumors. Damage to the growth plate, stemming from factors like inadequate blood supply, separation from bone components, or minor misalignment, can impede bone development, distort joint structure, and potentially result in lasting joint injuries. Divergence between chronological and assessed ages can serve as an indicator of growth-related problems, as accurate bone age assessment mirrors the actual progression of growth. Skeletal age estimation plays a pivotal role in identifying endocrine disorders, genetic abnormalities, and growth irregularities. In our effort to address the challenge of bone age assessment, this study utilizes the Radiological Society of North America’s Pediatric Bone Age Challenge dataset, comprising 12,600 radiological images of patients’ left hands, along with their gender and bone age data. We propose a robust bone age evaluation system grounded in hand skeleton guidelines for the precise detection of hand bone maturation. The proposed approach for bone age assessment centers on a tailored convolutional neural network (CNN), which attains an accuracy rate of 97%. Moreover, this research analyzes growth rate prediction using six transfer learning models, offering valuable insights into the predictive capabilities of these models. This study not only contributes to advancing bone age estimation techniques but also underscores the potential of the proposed CNN-based approach in achieving highly accurate results, further enhancing diagnostic precision in pediatric medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Prevedello LM, Halabi SS, Shih G, Wu CC, Kohli MD, Chokshi FH, Erickson BJ, Kalpathy-Cramer J, Andriole KP, Flanders AE (2019) Radiol: Artif Intell. https://doi.org/10.1148/ryai.2019180031

  2. Iglovikov VI, Rakhlin A, Kalinin AA, Shvets AA (2018) In: Lecture notes in computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-030-00889-5_34

  3. Satoh M (2015) Bone age: assessment methods and clinical applications. https://doi.org/10.1297/cpe.24.143

  4. Greulich WW, Pyle SI (1959). Ame J Med Sci. https://doi.org/10.1097/00000441-195909000-00030

  5. Carty H (2002) J Bone Joint Surg. British. https://doi.org/10.1302/0301-620x.84b2.0840310c

  6. Wittschieber D, Vieth V, Wierer T, Pfeiffer H, Schmeling A (2013). Int J Legal Med. https://doi.org/10.1007/s00414-013-0832-9

  7. King DG, Steventon DM, O’Sullivan MP, Cook AM, Hornsby VP, Jefferson IG, King PR (1994) British. J Radiol. https://doi.org/10.1259/0007-1285-67-801-848

  8. Westerberg E (2020) Dissertation, Faculty of Computing Blekinge Institute of Technology, SE-371 79\(\tilde{}{\ldots }\)

  9. Poznanski AK, Hernandez RJ, Guire KE, Bereza UL, Garn SM (1978). Radiology. https://doi.org/10.1148/129.3.661

  10. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017). Med Image Anal. https://doi.org/10.1016/j.media.2016.10.010

  11. Krizhevsky A, Sutskever I, Hinton GE (2017). Commun ACM. https://doi.org/10.1145/3065386

  12. Lee JH, Kim KG (2018). Healthc Informat Res. https://doi.org/10.4258/hir.2018.24.1.86

  13. Barhoom D, Mohseni R, Behfar M, Hamidieh AA (2022) J Pediatr Hematol/Oncol 44(8):e1050

  14. Iglovikov VI, Rakhlin A, Kalinin AA, Shvets AA (2018) In: Deep learning in medical image analysis and multimodal learning for clinical decision support: 4th international workshop, DLMIA 2018, and 8th international workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, Springer, pp 300–308

  15. Liu B, Zhang Y, Chu M, Bai X, Zhou F (2019) IEEE Access 7:120976

  16. Salim I, Hamza AB (2021) Multimedia Tools Appl 80(20):30461

  17. Zulkifley MA, Mohamed NA, Abdani SR, Kamari NAM, Moubark AM, Ibrahim AA (2021) Diagnostics 11(5):765

  18. Obuchowicz R, Nurzynska K, Pierzchala M, Piorkowski A, Strzelecki M (2023) J Clin Med 12(8):2762

  19. Pal SK, King RA (1983). IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.1983.4767347

  20. Pietka E, Gertych A, Pospiech S, Cao F, Huang HK, Gilsanz V (2001) IEEE Trans Med Imag. https://doi.org/10.1109/42.938240

  21. Pietka E, Pospiech-Kurkowska S, Gertych A, Cao F (2003) Computer Med Imag Graph. https://doi.org/10.1016/S0895-6111(02)00076-9

  22. Hsieh CW, Jong TL, Chou YH, Tiu CM (2007) Chinese Med J. https://doi.org/10.1097/00029330-200705010-00006

  23. Zhang J, Tang J, Li J (2007) In: Lecture notes in computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-540-71703-4_106

  24. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) IEEE Trans Med Imag. https://doi.org/10.1109/TMI.2008.926067

  25. Giordano D, Spampinato C, Scarciofalo G, Leonardi R (2010) IEEE Trans Instrument Meas. https://doi.org/10.1109/TIM.2010.2058210

  26. Giordano D, Kavasidis I, Spampinato C (2016). Comput Methods Programs Biomed https://doi.org/10.1016/j.cmpb.2015.10.012

  27. Kashif M, Deserno TM, Haak D, Jonas S (2016) Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2015.11.006

  28. Seok J, Kasa-Vubu J, DiPietro M, Girard A (2016) Expert Syst Appl. https://doi.org/10.1016/j.eswa.2015.12.011

  29. Giordano D, Leonardi R, Maiorana F, Scarciofalo G, Spampinato C (2007) In: Annual international conference of the IEEE engineering in medicine and biology–proceedings. https://doi.org/10.1109/IEMBS.2007.4353861

  30. Cao F, Huang HK, Pietka E, Gilsanz V (2000) Comput Med Imag Graph. https://doi.org/10.1016/S0895-6111(00)00026-4

  31. Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee RE (1997) In: IEEE conference publication. https://doi.org/10.1049/cp:19971008

  32. Aja-Fernández S, De Luis-García R, Martín-Fernández MÁ, Alberola-López C (2004) J Biomed Informat. https://doi.org/10.1016/j.jbi.2004.01.002

  33. Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee R (2000) IEEE Trans Inf Technol Biomed 4(4):292

  34. LeCun Y, Bengio Y, Hinton G (2015) Nature 521(7553):436

  35. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2019) Nature

  36. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting M, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VA, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K (2018) Cell. https://doi.org/10.1016/j.cell.2018.02.010

  37. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) JAMA-J Am Med Assoc. https://doi.org/10.1001/jama.2016.17216

  38. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sanchez CI, Van Ginneken B (2016) IEEE Trans Med Imag. https://doi.org/10.1109/TMI.2016.2536809

  39. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Radiology. https://doi.org/10.1148/radiol.2017170236

  40. Kim P (2017) Springer MATLAB DEE 121

  41. Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) J Digit Imag. https://doi.org/10.1007/s10278-017-9955-8

  42. Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R (2018) J Digit Imag. https://doi.org/10.1007/s10278-018-0053-3

  43. Ronneberger O, Fischer P, Brox T (2015) In: Lecture notes in computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics. https://doi.org/10.1007/978-3-319-24574-4_28

  44. He K, Zhang X, Ren S, Sun J (2016) In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2016.90

  45. Simonyan K, Zisserman A (2015) In: 3rd international conference on learning representations, ICLR 2015–conference track proceedings

  46. Canziani A, Paszke A, Culurciello E (2016) arXiv:1605.07678

  47. De Luca S, Mangiulli T, Merelli V, Conforti F, Velandia Palacio LA, Agostini S, Spinas E, Cameriere R (2016) J Forensic Legal Med. https://doi.org/10.1016/j.jflm.2016.01.030

  48. Tang FH, Chan JL, Chan BK (2019) J Digit Imag. https://doi.org/10.1007/s10278-018-0135-2

  49. Pahuja M, Kumar Garg N (2018) In: 2018 3rd IEEE international conference on recent trends in electronics, information and communication technology, RTEICT 2018–proceedings. https://doi.org/10.1109/RTEICT42901.2018.9012225

  50. Dallora AL, Anderberg P, Kvist O, Mendes E, Ruiz SD, Berglund JS (2019). Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. https://doi.org/10.1371/journal.pone.0220242

  51. Simu S, Lal S (2018) In: Proceedings of the international conference on intelligent sustainable systems, ICISS 2017. https://doi.org/10.1109/ISS1.2017.8389311

  52. Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, Pan I, Pereira LA, Sousa RT, Abdala N et al (2019) Radiology 290(2):498

  53. Akhade R, Dhanorkar A, Chawhan J, Khanapuri J (2022) In: 2022 5th international conference on advances in science and technology (ICAST), pp 1–5

  54. Beheshtian E, Putman K, Santomartino SM, Parekh VS, Yi PH (2022) Radiology 306(2):e220505

  55. Kim KD, Kyung S, Jang M, Ji S, Lee DH, Yoon HM, Kim N (2023) J Digit Imag 1–12

  56. Wibisono A, Mursanto P (2020) J Big Data. https://doi.org/10.1186/s40537-020-00347-0

  57. Reddy NE, Rayan JC, Annapragada AV, Mahmood NF, Scheslinger AE, Zhang W, Kan JH (2020) Pediatr Radiol. https://doi.org/10.1007/s00247-019-04587-y

  58. Manzoor M, Umer M, Sadiq S, Ishaq A, Ullah S, Madni HA, Bisogni C (2021) IEEE Access 9:128359

  59. Marouf M, Siddiqi R, Bashir F, Vohra B (2020) In: 2020 3rd international conference on computing, mathematics and engineering technologies: idea to innovation for building the knowledge economy, iCoMET 2020. https://doi.org/10.1109/iCoMET48670.2020.9073878

  60. Mader KS (2017) RSNA bone age. https://www.kaggle.com/kmader/rsna-bone-age

  61. Hameed A, Umer M, Hafeez U, Mustafa H, Sohaib A, Siddique MA, Madni HA (2021) J Ambient Intell Human Comput 1–15

  62. Umer M, Sadiq S, Karamti H, Karamti W, Majeed R, Nappi M (2022) Sensors 22(7):2431

  63. Chollet F (2017) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258

  64. Carvalho T, De Rezende ER, Alves MT, Balieiro FK, Sovat RB (2017) In: 2017 16th IEEE international conference on machine learning and applications (ICMLA), pp 866–870

  65. Rachburee N, Punlumjeak W (2022) IAES Int J Artif Intell 11(4):1344

  66. Xia X, Xu C, Nan B (2017) In: 2017 2nd international conference on image, vision and computing (ICIVC), pp 783–787

  67. Geetha A, Prakash N (2022) Comput Syst Sci Eng 43(3):1041

  68. Theckedath D, Sedamkar R (2020) SN Comput Sci 1:1

  69. Debbal S, Bereksi-Reguig F (2008) Biomed Soft Comput Human Sci

  70. Zhao B, Lu H, Chen S, Liu J, Wu D (2017) J Syst Eng Electron. https://doi.org/10.21629/JSEE.2017.01.18

  71. Seok J, Hyun B, Kasa-Vubu J, Girard A (2012) In: 2012 IEEE international conference on systems, man, and cybernetics (SMC), pp 208–213

  72. Somkantha K, Theera-Umpon N, Auephanwiriyakul S (2011) J Digit Imag 24:1044

  73. Cao F, Huang H, Pietka E, Gilsanz V (2000) Comput Med Imag Graph 24(5):297

  74. Zhang A, Gertych A, Liu BJ (2007) Comput Med Imag Graph 31(4–5):299

  75. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2008) IEEE Trans Med Imag 28(1):52

Download references

Acknowledgements

We would like to acknowledge the invaluable guidance and support received from our supervisors and colleagues throughout the research process. This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R349), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umer.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, H., Umer, M., Saidani, O. et al. Improving prediction of skeletal growth problems for age evaluation using hand X-rays. Multimed Tools Appl 83, 80027–80049 (2024). https://doi.org/10.1007/s11042-023-17364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17364-9

Keywords

Navigation