Abstract
Skeletal age estimation using X-ray images is a widely employed clinical method for identifying anomalies in bone growth in infants and newborns. Pediatric bone abnormalities can arise from a spectrum of conditions, including wounds, infections, or tumors. Damage to the growth plate, stemming from factors like inadequate blood supply, separation from bone components, or minor misalignment, can impede bone development, distort joint structure, and potentially result in lasting joint injuries. Divergence between chronological and assessed ages can serve as an indicator of growth-related problems, as accurate bone age assessment mirrors the actual progression of growth. Skeletal age estimation plays a pivotal role in identifying endocrine disorders, genetic abnormalities, and growth irregularities. In our effort to address the challenge of bone age assessment, this study utilizes the Radiological Society of North America’s Pediatric Bone Age Challenge dataset, comprising 12,600 radiological images of patients’ left hands, along with their gender and bone age data. We propose a robust bone age evaluation system grounded in hand skeleton guidelines for the precise detection of hand bone maturation. The proposed approach for bone age assessment centers on a tailored convolutional neural network (CNN), which attains an accuracy rate of 97%. Moreover, this research analyzes growth rate prediction using six transfer learning models, offering valuable insights into the predictive capabilities of these models. This study not only contributes to advancing bone age estimation techniques but also underscores the potential of the proposed CNN-based approach in achieving highly accurate results, further enhancing diagnostic precision in pediatric medicine.
Similar content being viewed by others
Data availability statement
The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.
References
Prevedello LM, Halabi SS, Shih G, Wu CC, Kohli MD, Chokshi FH, Erickson BJ, Kalpathy-Cramer J, Andriole KP, Flanders AE (2019) Radiol: Artif Intell. https://doi.org/10.1148/ryai.2019180031
Iglovikov VI, Rakhlin A, Kalinin AA, Shvets AA (2018) In: Lecture notes in computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-030-00889-5_34
Satoh M (2015) Bone age: assessment methods and clinical applications. https://doi.org/10.1297/cpe.24.143
Greulich WW, Pyle SI (1959). Ame J Med Sci. https://doi.org/10.1097/00000441-195909000-00030
Carty H (2002) J Bone Joint Surg. British. https://doi.org/10.1302/0301-620x.84b2.0840310c
Wittschieber D, Vieth V, Wierer T, Pfeiffer H, Schmeling A (2013). Int J Legal Med. https://doi.org/10.1007/s00414-013-0832-9
King DG, Steventon DM, O’Sullivan MP, Cook AM, Hornsby VP, Jefferson IG, King PR (1994) British. J Radiol. https://doi.org/10.1259/0007-1285-67-801-848
Westerberg E (2020) Dissertation, Faculty of Computing Blekinge Institute of Technology, SE-371 79\(\tilde{}{\ldots }\)
Poznanski AK, Hernandez RJ, Guire KE, Bereza UL, Garn SM (1978). Radiology. https://doi.org/10.1148/129.3.661
Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017). Med Image Anal. https://doi.org/10.1016/j.media.2016.10.010
Krizhevsky A, Sutskever I, Hinton GE (2017). Commun ACM. https://doi.org/10.1145/3065386
Lee JH, Kim KG (2018). Healthc Informat Res. https://doi.org/10.4258/hir.2018.24.1.86
Barhoom D, Mohseni R, Behfar M, Hamidieh AA (2022) J Pediatr Hematol/Oncol 44(8):e1050
Iglovikov VI, Rakhlin A, Kalinin AA, Shvets AA (2018) In: Deep learning in medical image analysis and multimodal learning for clinical decision support: 4th international workshop, DLMIA 2018, and 8th international workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, Springer, pp 300–308
Liu B, Zhang Y, Chu M, Bai X, Zhou F (2019) IEEE Access 7:120976
Salim I, Hamza AB (2021) Multimedia Tools Appl 80(20):30461
Zulkifley MA, Mohamed NA, Abdani SR, Kamari NAM, Moubark AM, Ibrahim AA (2021) Diagnostics 11(5):765
Obuchowicz R, Nurzynska K, Pierzchala M, Piorkowski A, Strzelecki M (2023) J Clin Med 12(8):2762
Pal SK, King RA (1983). IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.1983.4767347
Pietka E, Gertych A, Pospiech S, Cao F, Huang HK, Gilsanz V (2001) IEEE Trans Med Imag. https://doi.org/10.1109/42.938240
Pietka E, Pospiech-Kurkowska S, Gertych A, Cao F (2003) Computer Med Imag Graph. https://doi.org/10.1016/S0895-6111(02)00076-9
Hsieh CW, Jong TL, Chou YH, Tiu CM (2007) Chinese Med J. https://doi.org/10.1097/00029330-200705010-00006
Zhang J, Tang J, Li J (2007) In: Lecture notes in computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-540-71703-4_106
Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) IEEE Trans Med Imag. https://doi.org/10.1109/TMI.2008.926067
Giordano D, Spampinato C, Scarciofalo G, Leonardi R (2010) IEEE Trans Instrument Meas. https://doi.org/10.1109/TIM.2010.2058210
Giordano D, Kavasidis I, Spampinato C (2016). Comput Methods Programs Biomed https://doi.org/10.1016/j.cmpb.2015.10.012
Kashif M, Deserno TM, Haak D, Jonas S (2016) Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2015.11.006
Seok J, Kasa-Vubu J, DiPietro M, Girard A (2016) Expert Syst Appl. https://doi.org/10.1016/j.eswa.2015.12.011
Giordano D, Leonardi R, Maiorana F, Scarciofalo G, Spampinato C (2007) In: Annual international conference of the IEEE engineering in medicine and biology–proceedings. https://doi.org/10.1109/IEMBS.2007.4353861
Cao F, Huang HK, Pietka E, Gilsanz V (2000) Comput Med Imag Graph. https://doi.org/10.1016/S0895-6111(00)00026-4
Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee RE (1997) In: IEEE conference publication. https://doi.org/10.1049/cp:19971008
Aja-Fernández S, De Luis-García R, Martín-Fernández MÁ, Alberola-López C (2004) J Biomed Informat. https://doi.org/10.1016/j.jbi.2004.01.002
Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee R (2000) IEEE Trans Inf Technol Biomed 4(4):292
LeCun Y, Bengio Y, Hinton G (2015) Nature 521(7553):436
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2019) Nature
Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting M, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VA, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K (2018) Cell. https://doi.org/10.1016/j.cell.2018.02.010
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) JAMA-J Am Med Assoc. https://doi.org/10.1001/jama.2016.17216
Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sanchez CI, Van Ginneken B (2016) IEEE Trans Med Imag. https://doi.org/10.1109/TMI.2016.2536809
Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Radiology. https://doi.org/10.1148/radiol.2017170236
Kim P (2017) Springer MATLAB DEE 121
Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) J Digit Imag. https://doi.org/10.1007/s10278-017-9955-8
Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R (2018) J Digit Imag. https://doi.org/10.1007/s10278-018-0053-3
Ronneberger O, Fischer P, Brox T (2015) In: Lecture notes in computer science. Lecture notes in artificial intelligence and lecture notes in bioinformatics. https://doi.org/10.1007/978-3-319-24574-4_28
He K, Zhang X, Ren S, Sun J (2016) In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2016.90
Simonyan K, Zisserman A (2015) In: 3rd international conference on learning representations, ICLR 2015–conference track proceedings
Canziani A, Paszke A, Culurciello E (2016) arXiv:1605.07678
De Luca S, Mangiulli T, Merelli V, Conforti F, Velandia Palacio LA, Agostini S, Spinas E, Cameriere R (2016) J Forensic Legal Med. https://doi.org/10.1016/j.jflm.2016.01.030
Tang FH, Chan JL, Chan BK (2019) J Digit Imag. https://doi.org/10.1007/s10278-018-0135-2
Pahuja M, Kumar Garg N (2018) In: 2018 3rd IEEE international conference on recent trends in electronics, information and communication technology, RTEICT 2018–proceedings. https://doi.org/10.1109/RTEICT42901.2018.9012225
Dallora AL, Anderberg P, Kvist O, Mendes E, Ruiz SD, Berglund JS (2019). Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. https://doi.org/10.1371/journal.pone.0220242
Simu S, Lal S (2018) In: Proceedings of the international conference on intelligent sustainable systems, ICISS 2017. https://doi.org/10.1109/ISS1.2017.8389311
Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, Pan I, Pereira LA, Sousa RT, Abdala N et al (2019) Radiology 290(2):498
Akhade R, Dhanorkar A, Chawhan J, Khanapuri J (2022) In: 2022 5th international conference on advances in science and technology (ICAST), pp 1–5
Beheshtian E, Putman K, Santomartino SM, Parekh VS, Yi PH (2022) Radiology 306(2):e220505
Kim KD, Kyung S, Jang M, Ji S, Lee DH, Yoon HM, Kim N (2023) J Digit Imag 1–12
Wibisono A, Mursanto P (2020) J Big Data. https://doi.org/10.1186/s40537-020-00347-0
Reddy NE, Rayan JC, Annapragada AV, Mahmood NF, Scheslinger AE, Zhang W, Kan JH (2020) Pediatr Radiol. https://doi.org/10.1007/s00247-019-04587-y
Manzoor M, Umer M, Sadiq S, Ishaq A, Ullah S, Madni HA, Bisogni C (2021) IEEE Access 9:128359
Marouf M, Siddiqi R, Bashir F, Vohra B (2020) In: 2020 3rd international conference on computing, mathematics and engineering technologies: idea to innovation for building the knowledge economy, iCoMET 2020. https://doi.org/10.1109/iCoMET48670.2020.9073878
Mader KS (2017) RSNA bone age. https://www.kaggle.com/kmader/rsna-bone-age
Hameed A, Umer M, Hafeez U, Mustafa H, Sohaib A, Siddique MA, Madni HA (2021) J Ambient Intell Human Comput 1–15
Umer M, Sadiq S, Karamti H, Karamti W, Majeed R, Nappi M (2022) Sensors 22(7):2431
Chollet F (2017) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
Carvalho T, De Rezende ER, Alves MT, Balieiro FK, Sovat RB (2017) In: 2017 16th IEEE international conference on machine learning and applications (ICMLA), pp 866–870
Rachburee N, Punlumjeak W (2022) IAES Int J Artif Intell 11(4):1344
Xia X, Xu C, Nan B (2017) In: 2017 2nd international conference on image, vision and computing (ICIVC), pp 783–787
Geetha A, Prakash N (2022) Comput Syst Sci Eng 43(3):1041
Theckedath D, Sedamkar R (2020) SN Comput Sci 1:1
Debbal S, Bereksi-Reguig F (2008) Biomed Soft Comput Human Sci
Zhao B, Lu H, Chen S, Liu J, Wu D (2017) J Syst Eng Electron. https://doi.org/10.21629/JSEE.2017.01.18
Seok J, Hyun B, Kasa-Vubu J, Girard A (2012) In: 2012 IEEE international conference on systems, man, and cybernetics (SMC), pp 208–213
Somkantha K, Theera-Umpon N, Auephanwiriyakul S (2011) J Digit Imag 24:1044
Cao F, Huang H, Pietka E, Gilsanz V (2000) Comput Med Imag Graph 24(5):297
Zhang A, Gertych A, Liu BJ (2007) Comput Med Imag Graph 31(4–5):299
Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2008) IEEE Trans Med Imag 28(1):52
Acknowledgements
We would like to acknowledge the invaluable guidance and support received from our supervisors and colleagues throughout the research process. This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R349), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Farooq, H., Umer, M., Saidani, O. et al. Improving prediction of skeletal growth problems for age evaluation using hand X-rays. Multimed Tools Appl 83, 80027–80049 (2024). https://doi.org/10.1007/s11042-023-17364-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-023-17364-9