Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

StegGAN: hiding image within image using conditional generative adversarial networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Steganography is the art of hiding a secret message in another innocuous-looking image (or any digital media). Statistical imperceptibility is one of the major concerns for conventional steganography. In recent times, deep learning-based schemes have shown remarkable success in hiding an image within an image. However, a majority of these approaches suffer from the visual artifacts in the embedded and extracted images. In this paper, we have proposed a conditional generative adversarial network-based architecture for hiding an image within an image. The proposed method ensures the visual quality, statistical un-detectability as well as a noise-free extraction by incorporating the perceptual loss function and adversarial training. The proposed framework is tested on various datasets, and results have shown notable improvement (\(\sim 1~dB\)) over existing methods. An ablation study is presented at the end of this paper to demonstrate the contributions of the various modules of the proposed architecture. Code is available at https://github.com/brijeshiitg/StegGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Otsu-thresholding can be found at: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html

  2. https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_style/neural_style.py.

References

  1. Abdulla AA, Jassim SA, Sellahewa H (2013) Efficient high-capacity steganography technique. In: Mobile multimedia/image processing, security, and applications 2013, vol 8755, p 875508. International society for optics and photonics

  2. Abdulla AA, Jassim SA, Sellahewa H (2013) Secure steganography technique based on bitplane indexes. In: 2013 IEEE International symposium on multimedia, pp 287–291. IEEE

  3. Abdulla AA, Sellahewa H, Jassim SA (2014) Steganography based on pixel intensity value decomposition. In: Mobile multimedia/image processing, security, and applications 2014, vol 9120, p 912005. International society for optics and photonics

  4. Agustsson E, Timofte R (2017) Ntire 2017 challenge on single image super-resolution: Dataset and study. In: The IEEE conference on computer vision and pattern recognition (CVPR) workshops

  5. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: Precup D, Teh YW (eds) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70. PMLR, International Convention Centre, Sydney, Australia, pp 214–223

  6. Baluja S (2017) Hiding images in plain sight: deep steganography. In: Advances in neural information processing systems 30, pp 2069–2079

  7. Baluja S (2019) Hiding images within images. IEEE Trans Pattern Anal Mach Intell:1–1

  8. Boehm B (2014) Stegexpose - A tool for detecting LSB steganography. arXiv:1410.6656

  9. Boroumand M, Chen M, Fridrich J (2018) Deep residual network for steganalysis of digital images. IEEE Trans Inform Forensic Secur 14(5):1181–1193

    Article  Google Scholar 

  10. Franzen R Kodak lossless true color image suite. http://r0k.us/graphics/kodak/

  11. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inform Forensic Secur 7(3):868–882

    Article  Google Scholar 

  12. Goljan M, Fridrich J, Cogranne R (2014) Rich model for steganalysis of color images. In: 2014 IEEE International workshop on information forensics and security (WIFS), pp 185–190

  13. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  14. Gu S, Meng D, Zuo W, Zhang L (2017) Joint convolutional analysis and synthesis sparse representation for single image layer separation. In: 2017 IEEE International conference on computer vision (ICCV), pp 1717–1725

  15. Haichao S, Jing D, Wei W, Yinlong Q, Xiaoyu Z (2018) Ssgan: secure steganography based on generative adversarial networks. In: Advances in multimedia information processing – PCM 2017. Springer International Publishing, Cham, pp 534–544

  16. Hayes J, Danezis G (2017) Generating steganographic images via adversarial training. In: Advances in neural information processing systems 30, pp 1954–1963

  17. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. arXiv:1502.01852

  18. Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. In: 2012 IEEE International workshop on information forensics and security (WIFS), pp 234–239. IEEE

  19. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Inform Secur 2014 (1):1

    Article  Google Scholar 

  20. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - vol 37, ICML’15, pp 448–456

  21. Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: European conference on computer vision, pp 694–711. Springer

  22. Kaur G, Singh S, Rani R (2020) A high capacity reversible data hiding technique based on pixel value ordering using interlock partitioning. In: 2020 7Th international conference on signal processing and integrated networks (SPIN), pp 727–732. IEEE

  23. Kaur G, Singh S, Rani R, Kumar R (2020) A comprehensive study of reversible data hiding (rdh) schemes based on pixel value ordering (pvo). Archive Comput Method Eng:1–52

  24. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  25. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inform Forensic Secur 7(2):432–444

    Article  Google Scholar 

  26. Kumar R, Chand S, Singh S (2018) A reversible data hiding scheme using pixel location. Int Arab J Inf Technol 15(4):763–768

    Google Scholar 

  27. Kumar R, Chand S, Singh S (2019) An optimal high capacity reversible data hiding scheme using move to front coding for lzw codes. Multimed Tools Appl 78(16):22977–23001

    Article  Google Scholar 

  28. Lang X, Zhu F, Hao Y, Ou J (2008) Integral image based fast algorithm for two-dimensional otsu thresholding. In: 2008 Congress on image and signal processing, vol 3, pp 677–681

  29. Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. In: 2014 IEEE International conference on image processing (ICIP), pp 4206–4210. https://doi.org/10.1109/ICIP.2014.7025854

  30. Li X, Yang B, Cheng D, Zeng T (2009) A generalization of lsb matching. IEEE Signal Process Lett 16(2):69–72. https://doi.org/10.1109/LSP.2008.2008947

    Article  Google Scholar 

  31. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision, pp 740–755. Springer

  32. Malik A, Singh S, Kumar R (2018) Recovery based high capacity reversible data hiding scheme using even-odd embedding. Multimed Tools Appl 77 (12):15803–15827

    Article  Google Scholar 

  33. Mielikainen J (2006) Lsb matching revisited. IEEE Signal Process Lett 13(5):285–287. https://doi.org/10.1109/LSP.2006.870357

    Article  Google Scholar 

  34. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784

  35. Nash JF (1950) Equilibrium points in n-person games. Proc Nat Academy Sci 36(1):48–49. https://doi.org/10.1073/pnas.36.1.48

    Article  MathSciNet  Google Scholar 

  36. Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern recognition 37(9):1855–1872

    Article  Google Scholar 

  37. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch

  38. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inform Forensic Secur 5(2):215–224

    Article  Google Scholar 

  39. Pevnỳ T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: International workshop on information hiding, pp 161–177. Springer

  40. Provos N, Honeyman P (2003) Hide and seek: an introduction to steganography. IEEE Secur Privacy 99(3):32–44. https://doi.org/10.1109/MSECP.2003.1203220

    Article  Google Scholar 

  41. Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. In: Media watermarking, security, and forensics

  42. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241. Springer

  43. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis (IJCV) 115 (3):211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  44. Sarkar T, Sanyal S (2014) Reversible and irreversible data hiding technique. arXiv:1405.2684

  45. Sheikh HR, Bovik AC (2004) Image information and visual quality. In: 2004 IEEE International conference on acoustics, speech, and signal processing, vol 3, pp iii–709

  46. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  47. Singh B, Chhajed M, Sur A, Mitra P (2020) Steganalysis using learned denoising kernels. Multimed Tools Appl:1–15

  48. Singh B, Sharma PK, Saxena R, Sur A, Mitra P (2019) A new steganalysis method using densely connected convnets. In: International conference on pattern recognition and machine intelligence, pp 277–285. Springer

  49. Singh B, Sur A, Mitra P (2021) Steganalysis of digital images using deep fractal network. IEEE Trans Comput Social Syst:1–8. https://doi.org/10.1109/TCSS.2021.3052520

  50. Singh S (2020) Adaptive pvd and lsb based high capacity data hiding scheme. Multimed Tools Appl:1–23

  51. Tan S, Wu W, Shao Z, Li Q, Li B, Huang J (2020) Calpa-net: channel-pruning-assisted deep residual network for steganalysis of digital images. IEEE Trans Inform Forensic Secur 16:131–146

    Article  Google Scholar 

  52. Vapnik VN (1995) The nature of statistical learning theory. Springer, Berlin

    Book  Google Scholar 

  53. Volkhonskiy D, Nazarov I, Burnaev E (2020) Steganographic generative adversarial networks. In: Twelfth international conference on machine vision (ICMV 2019), vol 11433, p 114333m. International society for optics and photonics

  54. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  Google Scholar 

  55. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP, et al. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  56. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The thrity-seventh asilomar conference on signals, systems computers, 2003, vol 2, pp 1398–1402

  57. Weber AG (1997) The usc-sipi image database version 5 USC-SIPI Report 315(1)

  58. Xu G, Wu H, Shi Y (2016) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712. https://doi.org/10.1109/LSP.2016.2548421

    Article  Google Scholar 

  59. Zhang KA, Cuesta-Infante A, Veeramachaneni K (2019) Steganogan: Pushing the limits of image steganography. arXiv:1901.03892

  60. Zhang R, Dong S, Liu J (2018) Invisible steganography via generative adversarial networks. Multimed Tool Appl. https://doi.org/10.1007/s11042-018-6951-z

  61. Zhao H, Gallo O, Frosio I, Kautz J (2017) Loss functions for image restoration with neural networks. IEEE Trans Comput Imag 3(1):47–57

    Article  Google Scholar 

  62. Zhao H, Gallo O, Frosio I, Kautz J (2017) Loss functions for image restoration with neural networks. IEEE Trans Comput Imag 3(1):47–57. https://doi.org/10.1109/TCI.2016.2644865

    Article  Google Scholar 

  63. Zhu J, Kaplan R, Johnson J, Fei-Fei L (2018) Hidden: hiding data with deep networks. In: The european conference on computer vision (ECCV)

Download references

Acknowledgements

This work is supproted by Ministry of Human Resource Development, Govt. of India. We also acknowledge the Department of Biotechnology, Govt. of India for the financial support for the project BT/COE/34/SP28408/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Sharma, P.K., Huddedar, S.A. et al. StegGAN: hiding image within image using conditional generative adversarial networks. Multimed Tools Appl 81, 40511–40533 (2022). https://doi.org/10.1007/s11042-022-13172-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13172-9

Keywords

Navigation