Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Color image encryption algorithm based on 3D Zigzag transformation and view planes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To prevent the information leak of image content, image encryption technology has received increasing attention. The proposed algorithm adopts a diffusion-permutation-diffusion structure. Inspired by the three-view drawing in the engineering field, the view planes of color image are defined in this paper and applied in both diffusion stages. At the permutation stage, a 3D Zigzag transformation is proposed to destroy the correlation among R, G, B components. Moreover, we combine two chaotic systems as a new pseudo-random number generator (PRNG). Experiments and algorithm analyses indicate that the proposed algorithm has strong security and desirable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Abdallah EE, A. (2009) Ben Hamza, Prabir Bhattacharya. Watermarking 3D models using spectral mesh compression [J]. Signal Image Video Process 3(4):375–389

    Article  Google Scholar 

  2. Abdallah EE, Ben Hamza A, Bhattacharya P (2006) A robust block-based image watermarking scheme using fast Hadamard transform and singular value decomposition [C]. The 18th International Conference on Pattern Recognition, Montreal, Canada

  3. Abdallah E, Ben Hamza A, Bhattacharya P (2007) Spectral graph-theoretic approach to 3D mesh watermarking [C]. Graphics Interface Conference, Montréal, Canada

  4. Albhrany EA, Alshekly TK (2017) A new key stream generator based on 3D Henon map and 3D cat map [J]. Int J Sci Eng Res 8(1):2114–2120

    Google Scholar 

  5. Ayubi P, Setayeshi S, Rahmani AM (2020) Deterministic chaos game: A new fractal based pseudo-random number generator and its cryptographic application [J]. J Inf Secur Appl 52(6):1–20

    Google Scholar 

  6. Chen L, Chen J, Ma L, Wang S (2020) Cryptanalysis of a chaotic image cipher based on plaintext-related permutation and lookup table [J]. Nonlinear Dyn 100(4):3959–3978

    Article  Google Scholar 

  7. Dawahdeh ZE, Yaakob SN, bin Othman RR (2018) A new image encryption technique combining elliptic curve cryptosystem with hill cipher [J]. J King Saud Univ Comput Inf Sci 30(3):349–355

    Google Scholar 

  8. Fan C, Ding Q (2019) Analysing the dynamics of digital chaotic maps via a new period search algorithm [J]. Nonlinear Dynamics 97(1):831–841

    Article  MATH  Google Scholar 

  9. Gan Z, Chai X, Han D, Chen Y-r (2019) A chaotic image encryption algorithm based on 3-D bit-plane permutation [J]. Neural Comput Appl 31(11):7111–7130

    Article  Google Scholar 

  10. Guesmi R, Farah MAB, Kachouri A et al (2016) A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2 [J]. Nonlinear Dyn 83(3):1123–1136

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo F, Song X (2020) Bifurcation and chaos of a discrete-time population model [J]. Discret Dyn Nat Soc 2020(1):1–7

    MathSciNet  Google Scholar 

  12. Hanif M, Abbas S, Khan MA, Iqbal N, Rehman ZU, Saeed MA, Mohamed EM (2020) A novel and efficient multiple RGB images cipher based on chaotic system and circular shift operations [J]. IEEE Access 8:146408–146427

    Article  Google Scholar 

  13. He J, Cai J (2019) Design of a new chaotic system based on Van Der pol oscillator and its encryption application [J]. Mathematics 7(8):743

    Article  Google Scholar 

  14. Hua Z, Xu B, Jin F, Huang H (2019) Image encryption using Josephus problem and filtering diffusion [J]. IEEE Access 7:8660–8674

    Article  Google Scholar 

  15. Hua Z, Zhang Y, Zhou Y (2020) Two-dimensional modular chaotification system for improving chaos complexity [J]. IEEE Trans Signal Process 68(1):1937–1949

    Article  MathSciNet  Google Scholar 

  16. Hua Z, Zhang K, Li Y, Zhou Y (2021) Visually secure image encryption using adaptive-thresholding sparsification and parallel compressive sensing [J]. Signal Process 183(1):1–15

    Google Scholar 

  17. Hua Z, Li J, Chen Y, Yi S (2021) Design and application of an S-box using complete Latin square [J]. Nonlinear Dyn 104:807–825

    Article  Google Scholar 

  18. Hua Z, Zhu Z, Yi S, Zhang Z, Huang H (2021) Cross-plane colour image encryption using a two-dimensional logistic tent modular map [J]. Inf Sci 546(1):1063–1083

    Article  MathSciNet  Google Scholar 

  19. Huang L, Wang S, Xiang J (2019) A tweak-cube color image encryption scheme jointly manipulated by chaos and hyper-chaos [J]. Appl Sci 9(22):1–21

    Article  Google Scholar 

  20. Joshi AB, Kumar D, Gaffar A, Mishra DC (2020) Triple color image encryption based on 2D multiple parameter fractional discrete Fourier transform and 3D Arnold transform [J]. Opt Lasers Eng 133(10):1–13

    Google Scholar 

  21. Khan S, Han L, Lu H, Butt KK, Bachira G, Khan N-U (2019) A new hybrid image encryption algorithm based on 2D-CA, FSM-DNA rule generator, and FSBI [J]. IEEE Access 7(7):81333–81350

    Article  Google Scholar 

  22. Li C, Lin D, Lü J et al (2018) Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography [J]. IEEE MultiMedia 25(4):46–56

    Article  Google Scholar 

  23. Li C, Feng B, Li S, Kurths J, Chen G (2019) Dynamic analysis of digital chaotic maps via state-mapping networks [J]. IEEE Trans Circuits Syst I Regul Pap 66(6):2322–2335

    Article  MathSciNet  MATH  Google Scholar 

  24. Li J, Zang H, Wei X (2020) On the construction of one-dimensional discrete chaos theory based on the improved version of Marotto’s theorem [J]. J Comput Appl Math 380(1):1–15

    MathSciNet  MATH  Google Scholar 

  25. Lin C, Ja-Ling W (2020) Cryptanalysis and improvement of a chaotic map-based image encryption system using both plaintext related permutation and diffusion [J]. Entropy 22(5):1–23

    Article  MathSciNet  Google Scholar 

  26. Liu X, Xiao D, Huang W, Liu C (2019) Quantum block image encryption based on Arnold transform and sine chaotification model [J]. IEEE Access 7(4):57188–57199

    Article  Google Scholar 

  27. Liu Y, Jiang Z, Xu X, Zhang F, Xu J (2020) Optical image encryption algorithm based on hyper-chaos and public-key cryptography [J]. Opt Laser Technol 127(7):1–10

    Google Scholar 

  28. Ma Y, Li C, Bo O (2020) Cryptanalysis of an image block encryption algorithm based on chaotic maps [J]. J Inf Secur Appl 54(10):1–9

    Google Scholar 

  29. Malik DS, Shah T (2020) Color multiple image encryption scheme based on 3D-chaotic maps [J]. Math Comput Simul 178(1):646–666

    Article  MathSciNet  MATH  Google Scholar 

  30. Man Z, Li J, Di X et al (2019) An image segmentation encryption algorithm based on hybrid chaotic system [J]. IEEE Access 7(7):103047–103058

    Article  Google Scholar 

  31. Matthews R (1984) On the derivation of a ‘chaotic’ encryption algorithm [J]. Cryptologia 8(1):29–42

    Article  MathSciNet  Google Scholar 

  32. Niu Y, Zheng Z, Zhang X (2020) An image encryption approach based on chaotic maps and genetic operations [J]. Multimed Tools Appl 79(7):25613–25633

    Article  Google Scholar 

  33. Ramasamy P, Ranganathan V, Kadry S, Damaševičius R, Blažauskas T (2019) An image encryption scheme based on block scrambling, modified zigzag transformation and key generation using enhanced logistic—tent map [J]. Entropy 21(7):1–17

    Article  MathSciNet  Google Scholar 

  34. Sun S, Guo Y, Ruikun W (2019) A novel image encryption scheme based on 7D hyperchaotic system and row-column simultaneous swapping [J]. IEEE Access 7(2):28539–28547

    Article  Google Scholar 

  35. Tresor LO, Sumbwanyambe M (2019) A selective image encryption scheme based on 2D DWT, Henon map and 4D qi hyper-chaos [J]. IEEE Access 7(7):103463–103472

    Article  Google Scholar 

  36. Wang X, Guan N (2020) A novel chaotic image encryption algorithm based on extended zigzag confusion and RNA operation [J]. Opt Laser Technol 131(11):1–17

    Google Scholar 

  37. Wang X, Sun H (2019) A chaotic image encryption algorithm based on zigzag-like transform and DNA-like coding [J]. Multimed Tools Appl 78(24):34981–34997

    Article  Google Scholar 

  38. Wang T, Wang M-h (2020) Hyperchaotic image encryption algorithm based on bit-level permutation and DNA encoding [J]. Opt Laser Technol 132(12):1–13

    Google Scholar 

  39. Wang X, Yining S (2021) Image encryption based on compressed sensing and DNA encoding [J]. Signal Process Image Commun 12:1–12

    Google Scholar 

  40. Wang X, Zhang J, Cao G (2019) An image encryption algorithm based on zigzag transformation and LL compound chaotic system [J]. Opt Laser Technol 119(11):1–10

    Google Scholar 

  41. Yu L, Zheng Q, Jiahui W (2019) Cryptanalysis and enhancement of an image encryption scheme based on bit-plane extraction and multiple chaotic maps [J]. IEEE Access 7(5):74070–74080

    Google Scholar 

  42. Yu L, Zheng Q, Liao X et al (2020) Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled sine map [J]. Nonlinear Dyn 100(3):2917–2931

    Article  Google Scholar 

  43. Yu L, Zheng Q, Liao X et al (2020) Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled sine map [J]. Nonlinear Dynamics 100(3):2917–2931

    Article  Google Scholar 

  44. Zhang Y (2018) The unified image encryption algorithm based on chaos and cubic S-box [J]. Inf Sci 450(6):361–377

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang X, Wang L, Zheng Z et al (2019) A chaos-based image encryption technique utilizing Hilbert curves and H-fractals [J]. IEEE Access 7(7):74734–74746

    Article  Google Scholar 

  46. Zhao T, Ran Q, Lin Y et al (2016) Security of image encryption scheme based on multi-parameter fractional Fourier transform [J]. Opt Commun 376(10):47–51

    Article  Google Scholar 

  47. Zhu H, Zhao Y, Song Y (2019) 2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption [J]. IEEE Access 7(1):14081–14098

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express their sincerely thanks to the anonymous reviewers and editor for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, Z. Color image encryption algorithm based on 3D Zigzag transformation and view planes. Multimed Tools Appl 81, 31753–31785 (2022). https://doi.org/10.1007/s11042-022-13003-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13003-x

Keywords

Navigation