Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Motor imagery (MI) based brain-computer interface systems (BCIs) are highly in need for a large number of real-time applications such as hands and touch-free text entry system, movement of a wheelchair, movement of a cursor, prosthetic arm movement, virtual reality systems, etc. In recent years, sparse representation-based classification (SRC) is a growing technique and has been a successful technique on classifying MI-based Electroencephalography (EEG) signals. To further boost the proficiency of SRC technique, in this paper, a weighted SRC (WSRC) has been proposed for classifying MI signals. In WSRC approach, a weighted dictionary has been constructed according to the dissimilarity information between a test data and training samples. Then for the given test data, the sparse coefficients are computed over the weighted dictionary using l0-minimization problem. The sparse solution obtained using WSRC gives discriminative information and as a consequence, WSRC proves to be superior for MI-based EEG classification. The experimental results substantiate that WSRC is more efficient and accurate than SRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.bbci.de/competition/iii

  2. https://github.com/BCI-HCI-IITKGP/Weighted-Sparse-classification

References

  1. Ameri R, Pouyan A, Abolghasemi V (2016) Projective dictionary pair learning for EEG signal classification in brain computer interface applications. Neurocomputing 218:382–389

    Google Scholar 

  2. An X, Kuang D, Guo X, Zhao Y, He L (2014) A deep learning method for classification of EEG data based on motor imagery. In: International conference on intelligent computing. Springer, pp 203–210

  3. Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58 (6):1865–1873

    Google Scholar 

  4. Baali H, Khorshidtalab A, Mesbah M, Salami MJ (2015) A transform-based feature extraction approach for motor imagery tasks classification. IEEE J Transl Eng Health Med 3:1–8

    Google Scholar 

  5. Bekhti Y, Lucka F, Salmon J, Gramfort A (2018) A hierarchical Bayesian perspective on majorization-minimization for non-convex sparse regression: application to m/eeg source imaging. Inverse Problems

  6. Bell CJ, Shenoy P, Chalodhorn R, Rao RP (2008) Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng 5(2):214

    Google Scholar 

  7. Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JR, Schroder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159

    Google Scholar 

  8. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56

    Google Scholar 

  9. Cai TT, Wang L (2011) Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory 57(7):4680–4688

    MathSciNet  MATH  Google Scholar 

  10. Dokmanic I, Parhizkar R, Ranieri J, Vetterli M (2015) Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Process Mag 32 (6):12–30

    Google Scholar 

  11. Fan Z, Ni M, Zhu Q, Liu E (2015) Weighted sparse representation for face recognition. Neurocomputing 151:304–309

    Google Scholar 

  12. Fang L, Li S, Cunefare D, Farsiu S (2017) Segmentation based sparse reconstruction of optical coherence tomography images. IEEE Trans Med Imaging 36 (2):407–421

    Google Scholar 

  13. Fang L, Wang C, Li S, Benediktsson JA (2017) Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans Instrum Meas 66(7):1646–1657

    Google Scholar 

  14. Gan L, Xia J, Du P, Xu Z (2017) Dissimilarity-weighted sparse representation for hyperspectral image classification. IEEE Geosci Remote Sens Lett 14(11):1968–1972

    Google Scholar 

  15. Grosse-Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng 55(8):1991–2000

    Google Scholar 

  16. He B, Baxter B, Edelman BJ, Cline CC, Wenjing WY (2015) Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc IEEE 103(6):907–925

    Google Scholar 

  17. He L, Hu D, Wan M, Wen Y, von Deneen KM, Zhou M (2016) Common bayesian network for classification of EEG-based multiclass motor imagery bci. IEEE Tran Syst Man Cybern: Syst 46(6):843–854

    Google Scholar 

  18. Huang D, Qian K, Fei DY, Jia W, Chen X, Bai O (2012) Electroencephalography (EEG)-based brain–computer interface (BCI): a 2-d virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans Neural Syst Rehabil Eng 20(3):379–388

    Google Scholar 

  19. Jiao Y, Zhang Y, Chen X, Yin E, Jin J, Wang YX, Cichocki A (2018) Sparse group representation model for motor imagery EEG classification. IEEE Journal of Biomedical and Health Informatics

  20. Kevric J, Subasi A (2017) Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control 31:398–406

    Google Scholar 

  21. Kumar S, Sharma A, Mamun K, Tsunoda T (2016) A deep learning approach for motor imagery EEG signal classification. In: 3rd Asia-Pacific World congress on computer science and engineering (APWC on CSE). IEEE, pp 34–39

  22. Kumar S, Sharma A, Tsunoda T (2017) An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC bioinformatics 18(16):545

    Google Scholar 

  23. Li J, Cichocki A (2014) Deep learning of multifractal attributes from motor imagery induced EEG. In: International conference on neural information processing. Springer, pp 503–510

  24. Li Y, Wen PP (2014) Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain–computer interface. Comput Methods Programs Biomed 113(3):767–780

    Google Scholar 

  25. Li J, Struzik Z, Zhang L, Cichocki A (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing 165:23–31

    Google Scholar 

  26. Lu N, Yin T (2015) Motor imagery classification via combinatory decomposition of ERP and ERSP using sparse nonnegative matrix factorization. J Neurosci Methods 249:41–49

    Google Scholar 

  27. Lu CY, Min H, Gui J, Zhu L, Lei YK (2013) Face recognition via weighted sparse representation. J Vis Commun Image Represent 24(2):111–116

    Google Scholar 

  28. Lu N, Li T, Ren X, Miao H (2017) A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans Neural Syst Rehabil Eng 25(6):566–576

    Google Scholar 

  29. McFarland DJ, Wolpaw JR (2008) Brain-computer interface operation of robotic and prosthetic devices. Computer 41:10

    Google Scholar 

  30. McFarland DJ, Krusienski DJ, Sarnacki WA, Wolpaw JR (2008) Emulation of computer mouse control with a noninvasive brain-computer interface. J Neural Eng 5(2):101

    Google Scholar 

  31. Nejati M, Samavi S, Shirani S (2015) Multi-focus image fusion using dictionary-based sparse representation. Inform Fus 25:72–84

    Google Scholar 

  32. Ojeda A, Kreutz-Delgado K, Mullen T (2018) Fast and robust block-sparse Bayesian learning for eeg source imaging. Neuroimage 174:449–462

    Google Scholar 

  33. Ouzir N, Basarab A, Liebgott H, Harbaoui B, Tourneret JY (2018) Motion estimation in echocardiography using sparse representation and dictionary learning. IEEE Trans Image Process 27(1):64–77

    MathSciNet  MATH  Google Scholar 

  34. Paredes R, Vidal E (2006) Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans Pattern Anal Mach Intell 28(7):1100–1110

    Google Scholar 

  35. Park SA, Hwang HJ, Lim JH, Choi JH, Jung HK, Im CH (2013) Evaluation of feature extraction methods for EEG-based brain–computer interfaces in terms of robustness to slight changes in electrode locations. Med Biol Eng Comput 51 (5):571–579

    Google Scholar 

  36. Qiu Z, Jin J, Lam HK, Zhang Y, Wang X, Cichocki A (2016) Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 207:519–527

    Google Scholar 

  37. Roy DE (2017) Computer vision: principles, algorithms, applications, learning. Academic Press

  38. Royer AS, Doud AJ, Rose ML, He B (2010) EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans Neural Syst Rehabil Eng 18(6):581–589

    Google Scholar 

  39. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–5420

    Google Scholar 

  40. Sharma P, Abrol V, Sao AK (2017) Deep-sparse-representation-based features for speech recognition. IEEE/ACM Trans Audio Speech Lang Process 25(11):2162–2175

    Google Scholar 

  41. Shin Y, Lee S, Lee J, Lee HN (2012) Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems. J Neural Eng 9 (5):056002

    Google Scholar 

  42. Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee HN (2015) Simple adaptive sparse representation based classification schemes for EEG based brain–computer interface applications. Comput Biol Med 66:29–38

    Google Scholar 

  43. Sreeja SR, Samanta D (2019) Classification of multiclass motor imagery EEG signal using sparsity approach. Neurocomputing 368:133–145

    Google Scholar 

  44. Sreeja SR, Rabha J, Nagarjuna K, Samanta D, Mitra P, Sarma M (2017) Motor imagery EEG signal processing and classification using machine learning approach. In: 2017 International conference on new trends in computing sciences (ICTCS). IEEE, oo 61–66

  45. Sreeja SR, Rabha J, Samanta D, Mitra P, Sarma M (2017) Classification of motor imagery based EEG signals using sparsity approach. In: International conference on intelligent human computer interaction. Springer, pp 47–59

  46. Sreeja SR, Sahay RR, Samanta D, Mitra P (2018) Removal of eye blink artifacts from EEG signals using sparsity. IEEE J Biomed Health Inform 22 (5):1362–1372

    Google Scholar 

  47. Sturm I, Lapuschkin S, Samek W, Müller KR (2016) Interpretable deep neural networks for single-trial EEG classification. J Neurosci Methods 274:141–145

    Google Scholar 

  48. Tabar YR, Halici U (2016) A novel deep learning approach for classification of eeg motor imagery signals. J Neural Eng 14(1):016003

    Google Scholar 

  49. Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik-Int J Light Electron Opt 130:11–18

    Google Scholar 

  50. Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Inform Sci 274:55–69

    Google Scholar 

  51. Wan M, Yang G, Gai S, Yang Z (2017) Two-dimensional discriminant locality preserving projections (2ddlpp) and its application to feature extraction via fuzzy set. Multimed Tools Appl 76(1):355–371

    Google Scholar 

  52. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3360– 3367

  53. Wolpaw J, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University Press, USA

    Google Scholar 

  54. Yan C, Xie H, Chen J, Zha Z, Hao X, Zhang Y, Dai Q (2018) A fast uyghur text detector for complex background images. IEEE Trans Multimed 20 (12):3389–3398

    Google Scholar 

  55. Yan C, Li L, Zhang C, Liu B, Zhang Y, Dai Q (2019) Cross-modality bridging and knowledge transferring for image understanding. IEEE Transactions on Multimedia

  56. Zhang S, Zhan Y, Dewan M, Huang J, Metaxas DN, Zhou XS (2012) Towards robust and effective shape modeling: sparse shape composition. Med Image Anal 16(1):265–277

    Google Scholar 

  57. Zhang B, Perina A, Murino V, Del Bue A (2015) Sparse representation classification with manifold constraints transfer. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4557–4565

  58. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Google Scholar 

  59. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J Neurosci Methods 255:85–91

    Google Scholar 

  60. Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A (2016) Sparse Bayesian classification of eeg for brain–computer interface. IEEE Trans Neural Netw Learn Syst 27(11):2256–2267

    MathSciNet  Google Scholar 

  61. Zhang Y, Zhou G, Jin J, Zhang Y, Wang X, Cichocki A (2017) Sparse Bayesian multiway canonical correlation analysis for eeg pattern recognition. Neurocomputing 225:103–110

    Google Scholar 

  62. Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A (2018) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans Cybern 49(9):3322–3332

    Google Scholar 

  63. Zheng Q, Zhu F, Qin J, Heng PA (2018) Multiclass support matrix machine for single trial EEG classification. Neurocomputing 275:869–880

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Samanta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreeja, S.R., Himanshu & Samanta, D. Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications. Multimed Tools Appl 79, 13775–13793 (2020). https://doi.org/10.1007/s11042-019-08602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08602-0

Keywords

Navigation