Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

No-reference image quality assessment using bag-of-features with feature selection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The aim of no-reference image quality assessment (NR-IQA) is to assess the quality of an image, which is consistent with the mean opinion score, without any prior knowledge about the reference image. This work proposes a new NR-IQA technique based on natural scene statistics properties of the bag-of-features representation and feature selection algorithms. The proposed bag-of-features technique utilizes Harris affine detector and scale invariant feature transform to compute points, which are clustered using the k-means clustering algorithm to extract features for IQA. The extracted features are utilized with a support vector regression model to assess the quality of the image. The proposed technique outperforms state-of-the-art NR-IQA techniques, when tested on three commonly used subjective image quality assessment databases. The experimental results have shown that the features extracted using the proposed technique are database independent and shows high correlation with the mean opinion score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Attar A, Shahbahrami A, Rad RM (2016) Image quality assessment using edge based features. Multimedia Tools and Applications 75(12):7407–7422

    Google Scholar 

  2. Banitalebi-Dehkordi M, Khademi M, Ebrahimi-Moghadam A, Hadizadeh H (2018) An image quality assessment algorithm based on saliency and sparsity. Multimedia Tools and Applications: 1–20

  3. Bermejo P, Gámez JA, Puerta JM (2014) Speeding up incremental wrapper feature subset selection with naive bayes classifier. Knowl-Based Syst 55:140–147

    Google Scholar 

  4. Bianco S, Celona L, Napoletano P, Schettini R (2018) On the use of deep learning for blind image quality assessment. Signal, Image and Video Processing 12(2):355–362

    Google Scholar 

  5. Bosse S, Chen Q, Siekmann M, Samek W, Wiegand T (2016) Shearlet-based reduced reference image quality assessment. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 2052–2056

  6. Bovik AC (2013) Automatic prediction of perceptual image and video quality. Proc IEEE 101(9):2008–2024

    MathSciNet  Google Scholar 

  7. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Google Scholar 

  8. Chapelle O, Haffner P, Vapnik VN (1999) Support vector machines for histogram-based image classification. IEEE Trans Neural Netw 10(5):1055–1064

    Google Scholar 

  9. Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV, vol 1, Prague, pp 1–2

  10. Fang Y, Yan J, Li L, Wu J, Lin W (2018) No reference quality assessment for screen content images with both local and global feature representation. IEEE Trans Image Process 27(4):1600–1610

    MathSciNet  MATH  Google Scholar 

  11. Ghadiyaram D, Bovik AC (2017) Perceptual quality prediction on authentically distorted images using a bag of features approach. J Vis 17(1):32–32

    Google Scholar 

  12. Golestaneh S, Karam LJ (2016) Reduced-reference quality assessment based on the entropy of dwt coefficients of locally weighted gradient magnitudes. IEEE Trans Image Process 25(11):5293–5303

    MathSciNet  MATH  Google Scholar 

  13. Gu K, Zhai G, Yang X, Zhang W (2015) Using free energy principle for blind image quality assessment. IEEE Transactions on Multimedia 17(1):50–63

    Google Scholar 

  14. Gutlein M, Frank E, Hall M, Karwath A (2009) Large-scale attribute selection using wrappers. In: IEEE symposium on computational intelligence and data mining, 2009. CIDM’ 09. IEEE, pp 332–339

  15. He L, Tao D, Li X, Gao X (2012) Sparse representation for blind image quality assessment. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1146–1153

  16. Huang Y, Chen X, Ding X (2016) A harmonic means pooling strategy for structural similarity index measurement in image quality assessment. Multimedia Tools and Applications 75(5):2769–2780

    Google Scholar 

  17. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of psnr in image/video quality assessment. Electronics Letters 44(13):800–801

    Google Scholar 

  18. Jenadeleh M, Moghaddam ME (2017) Biqws: efficient wakeby modeling of natural scene statistics for blind image quality assessment. Multimedia Tools and Applications 76(12):13859–13880

    Google Scholar 

  19. Jiang Q, Shao F, Jiang G, Yu M, Peng Z (2015) Supervised dictionary learning for blind image quality assessment using quality-constraint sparse coding. J Vis Commun Image Represent 33:123–133

    Google Scholar 

  20. Khan M, Nizami IF, Majid M (2019) No-reference image quality assessment using gradient magnitude and wiener filtered wavelet features. Multimedia Tools and Applications 78(11):14485–14509

    Google Scholar 

  21. Khosravi MH, Hassanpour H (2017) Model-based full reference image blurriness assessment. Multimedia Tools and Applications 76(2):2733–2747

    Google Scholar 

  22. Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electro Imaging 19(1):011006–011006

    Google Scholar 

  23. Li C, Bovik AC, Wu X (2011) Blind image quality assessment using a general regression neural network. IEEE Trans Neural Netw 22(5):793–799

    Google Scholar 

  24. Li L, Yan Y, Lu Z, Wu J, Gu K, Wang S (2017) No-reference quality assessment of deblurred images based on natural scene statistics. IEEE Access 5:2163–2171

    Google Scholar 

  25. Li Q, Lin W, Fang Y (2017) Bsd: Blind image quality assessment based on structural degradation. Neurocomputing 236:93–103

    Google Scholar 

  26. Li Q, Lin W, Xu J, Fang Y (2016) Blind image quality assessment using statistical structural and luminance features. IEEE Trans Multimedia 18(12):2457–2469

    Google Scholar 

  27. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):79–116

    Google Scholar 

  28. Liu A, Wang J, Liu J, Su Y (2018) Comprehensive image quality assessment via predicting the distribution of opinion score. Multimedia Tools and Applications: 1–18

  29. Liu H, Setiono R, et al. (1996) A probabilistic approach to feature selection-a filter solution. In: ICML, vol 96. Citeseer, pp 319–327

  30. Liu L, Dong H, Huang H, Bovik AC (2014) No-reference image quality assessment in curvelet domain. Signal Process Image Commun 29(4):494–505

    Google Scholar 

  31. Liu L, Hua Y, Zhao Q, Huang H, Bovik AC (2016) Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Process Image Commun 40:1–15

    Google Scholar 

  32. Liu L, Liu B, Huang H, Bovik AC (2014) No-reference image quality assessment based on spatial and spectral entropies. Signal Process Image Commun 29 (8):856–863

    Google Scholar 

  33. Lu W, Xu T, Ren Y, He L (2016) Statistical modeling in the shearlet domain for blind image quality assessment. Multimedia Tools and Applications 75 (22):14417–14431

    Google Scholar 

  34. Lu Y, Xie F, Liu T, Jiang Z, Tao D (2015) No reference quality assessment for multiply-distorted images based on an improved bag-of-words model. IEEE Signal Process Lett 22(10):1811–1815

    Google Scholar 

  35. Ma L, Xu L, Zhang Y, Yan Y, Ngan KN (2016) No-reference retargeted image quality assessment based on pairwise rank learning. IEEE Trans Multimedia 18 (11):2228–2237

    Google Scholar 

  36. Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: European conference on computer vision. Springer, pp 128–142

  37. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1-2):43–72

    Google Scholar 

  38. Mittal A, Moorthy AK, Bovik AC (2012) Making image quality assessment robust. In: 2012 conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR). IEEE, pp 1718–1722

  39. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    MathSciNet  MATH  Google Scholar 

  40. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Google Scholar 

  41. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17(5):513–516

    Google Scholar 

  42. Moorthy AK, Bovik AC (2011) Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364

    MathSciNet  MATH  Google Scholar 

  43. Nafchi HZ, Shahkolaei A, Hedjam R, Cheriet M (2016) Mean deviation similarity index: efficient and reliable full-reference image quality evaluator. IEEE Access 4:5579–5590

    Google Scholar 

  44. Nizami IF, Majid M, Afzal H, Khurshid K (2017) Impact of feature selection algorithms on blind image quality assessment. Arab J Sci Eng: 1–14

  45. Nizami IF, Majid M, Khurshid K (2017) Efficient feature selection for blind image quality assessment based on natural scene statistics. In: 2017 14th International Bhurban conference on applied sciences and technology (IBCAST). IEEE, pp 318–322

  46. Nizami IF, Majid M, Khurshid K (2018) Feature selection algorithm for no-reference image quality assessment using natural scene statistics. Turkish J Elec Eng & Comp Sci 26(5):2163–2177

    Google Scholar 

  47. Nizami IF, Majid M, Khurshid K (2018) New feature selection algorithms for no-reference image quality assessment. Appl Intell 48(10):3482–3501

    Google Scholar 

  48. Nizami IF, Majid M, Manzoor W, Khurshid K, Jeon B (2019) Distortion-specific feature selection algorithm for universal blind image quality assessment. EURASIP J Image Video Process 2019(1):19

    Google Scholar 

  49. Omari M, El Hassouni M, Abdelouahad AA, Cherifi H (2015) A statistical reduced-reference method for color image quality assessment. Multimedia Tools and Applications 74(19):8685–8701

    Google Scholar 

  50. Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, et al. (2015) Image database tid2013: peculiarities, results and perspectives. Signal Process Image Commun 30:57–77

    Google Scholar 

  51. Rezaie F, Helfroush MS, Danyali H (2018) No-reference image quality assessment using local binary pattern in the wavelet domain. Multimedia Tools and Applications 77(2):2529–2541

    Google Scholar 

  52. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans Image Process 21 (8):3339–3352

    MathSciNet  MATH  Google Scholar 

  53. Saha A, Wu QJ (2016) Full-reference image quality assessment by combining global and local distortion measures. Signal Process 128:186–197

    Google Scholar 

  54. Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15 (11):3440–3451

    Google Scholar 

  55. Sheikh HR, Wang Z, Cormack L, Bovik AC (2005) Live image quality assessment database release 2

  56. Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 10(5):335–347

    MATH  Google Scholar 

  57. Sun T, Ding S, Xu X (2014) No-reference image quality assessment through sift intensity. Appl Math Info Sci 8(4):1925

    Google Scholar 

  58. Tanchenko A (2014) Visual-psnr measure of image quality. J Vis Commun Image Represent 25(5):874–878

    Google Scholar 

  59. Tang L, Li L, Gu K, Sun X, Zhang J (2016) Blind quality index for camera images with natural scene statistics and patch-based sharpness assessment. J Vis Commun Image Represent 40:335–344

    Google Scholar 

  60. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Google Scholar 

  61. Wei D, Li Y No-reference image quality assessment based on sift feature points. International Journal of Simulation-Systems, Science & Technology 17 (17)

  62. Wen Y, Li Y, Zhang X, Shi W, Wang L, Chen J (2017) A weighted full-reference image quality assessment based on visual saliency. J Vis Commun Image Represent 43:119–126

    Google Scholar 

  63. Wu J, Lin W, Fang Y, Li L, Shi G, Niwas I (2016) Visual structural degradation based reduced-reference image quality assessment. Signal Process Image Commun 47:16–27

    Google Scholar 

  64. Wu J, Lin W, Shi G, Li L, Fang Y (2016) Orientation selectivity based visual pattern for reduced-reference image quality assessment. Inf Sci 351:18–29

    Google Scholar 

  65. Wu J, Xia Z, Li H, Sun K, Gu K, Lu H (2017) No-reference image quality assessment with center-surround based natural scene statistics. Multimedia Tools and Applications: 1–21

  66. Wu Q, Li H, Meng F, Ngan KN (2018) A perceptually weighted rank correlation indicator for objective image quality assessment. IEEE Trans Image Process 27(5):2499–2513

    MathSciNet  MATH  Google Scholar 

  67. Wu Q, Li H, Wang Z, Meng F, Luo B, Li W, Ngan KN (2017) Blind image quality assessment based on rank-order regularized regression. IEEE Trans Multimedia 19(11):2490–2504

    Google Scholar 

  68. Xue W, Mou X, Zhang L, Bovik AC, Feng X (2014) Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans Image Process 23(11):4850–4862

    MathSciNet  MATH  Google Scholar 

  69. Yang X, Sun Q, Wang T (2018) Image quality assessment improvement via local gray-scale fluctuation measurement. Multimedia Tools and Applications 77 (18):24185–24202

    Google Scholar 

  70. Ye P, Kumar J, Kang L, Doermann D (2012) Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1098–1105

  71. Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    MathSciNet  MATH  Google Scholar 

  72. Zhang M, Muramatsu C, Zhou X, Hara T, Fujita H (2015) Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett 22(2):207–210

    Google Scholar 

  73. Zhang Y, Moorthy AK, Chandler DM, Bovik AC (2014) C-diivine: No-reference image quality assessment based on local magnitude and phase statistics of natural scenes. Signal Process Image Commun 29(7):725–747

    Google Scholar 

  74. Zhang Y, Wu J, Xie X, Li L, Shi G (2016) Blind image quality assessment with improved natural scene statistics model. Digital Signal Processing 57:56–65

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Fareed Nizami.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizami, I.F., Majid, M., Rehman, M.u. et al. No-reference image quality assessment using bag-of-features with feature selection. Multimed Tools Appl 79, 7811–7836 (2020). https://doi.org/10.1007/s11042-019-08465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08465-5

Keywords

Navigation