Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Natural disasters detection in social media and satellite imagery: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The analysis of natural disaster-related multimedia content got great attention in recent years. Being one of the most important sources of information, social media have been crawled over the years to collect and analyze disaster-related multimedia content. Satellite imagery has also been widely explored for disasters analysis. In this paper, we survey the existing literature on disaster detection and analysis of the retrieved information from social media and satellites. Literature on disaster detection and analysis of related multimedia content on the basis of the nature of the content can be categorized into three groups, namely (i) disaster detection in text; (ii) analysis of disaster-related visual content from social media; and (iii) disaster detection in satellite imagery. We extensively review different approaches proposed in these three domains. Furthermore, we also review benchmarking datasets available for the evaluation of disaster detection frameworks. Moreover, we provide a detailed discussion on the insights obtained from the literature review, and identify future trends and challenges, which will provide an important starting point for the researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://www.planet.com

  2. https://sites.google.com/site/satelliteimagery/home/satellite-imagery-pros-cons

  3. https://www.openstreetmap.org/#map=7/53.465/-8.240

  4. https://cloud.google.com/maps-platform/places/

  5. http://www.multimediaeval.org/mediaeval2017/

  6. http://www.multimediaeval.org/mediaeval2018/

  7. http://www.multimediaeval.org/mediaeval2017/multimediasatellite/index.html

  8. http://www.acmmm.org/2016/wp-content/uploads/2016/03/ACMMM16_GC_Sky_and_the_Social_Eye_latest.pdf

  9. https://www.preventionweb.net/risk/datasets#panel1-4

  10. http://crisislex.org/data-collections.html#CrisisLexT26

  11. https://landsat.usgs.gov/landsat-8

  12. https://www.digitalglobe.com

References

  1. Ahmad K, Conci N, Boato G, De Natale F (2016) Used: a large-scale social event detection dataset. In: Proceedings of the 7th international conference on multimedia systems. ACM, p 50

  2. Ahmad K, Konstantin P, Riegler M, Conci N, Holversen P (2017) Cnn and gan based satellite and social media data fusion for disaster detection. In: Working notes proceedings of the MediaEval workshop, p 2

  3. Ahmad K, Pogorelov K, Riegler M, Conci N, Halvorsen P (2018) Social media and satellites. Multimed Tools Appl: 1–39

  4. Ahmad K, Pogorelov K, Riegler M, Ostroukhova O, Halvorsen P, Conci N, Dahyot R (2019) Automatic detection of passable roads after floods in remote sensed and social media data. Signal Process Image Commun 74:110–118

    Google Scholar 

  5. Ahmad K, Riegler M, Pogorelov K, Conci N, Halvorsen P, De Natale F (2017) Jord: a system for collecting information and monitoring natural disasters by linking social media with satellite imagery. In: Proceedings of the 15th international workshop on content-based multimedia indexing. ACM, p 12

  6. Ahmad K, Riegler M, Riaz A, Conci N, Dang-Nguyen DT, Halvorsen P (2017) The jord system: linking sky and social multimedia data to natural disasters. In: Proceedings of the ACM international conference on multimedia retrieval. ACM, pp 461–465

  7. Ahmad K, Sohail A, Conci N, De Natale F (2018) A comparative study of global and deep features for the analysis of user-generated natural disaster related images. In: 2018 IEEE 13th image, video, and multidimensional signal processing workshop (IVMSP). IEEE, pp 1–5

  8. Ahmad S, Ahmad K, Ahmad N, Conci N (2017) Convolutional neural networks for disaster images retrieval. In: Proceedings of the MediaEval 2017 workshop (Sept. 13–15, 2017). Dublin, Ireland

  9. Alam F, Ofli F, Imran M (2018) Crisismmd: multimodal twitter datasets from natural disasters. In: Proceedings of the 12th international AAAI conference on web and social media (ICWSM)

  10. Alam F, Ofli F, Imran M (2018) Processing social media images by combining human and machine computing during crises. Int J Hum Comput Interact 34(4):311–327

    Google Scholar 

  11. Albuz E, Kocalar E, Khokhar AA (2001) Scalable color image indexing and retrieval using vector wavelets. IEEE Trans Knowl Data Eng 13(5):851–861

    Google Scholar 

  12. Amit SNKB, Shiraishi S, Inoshita T, Aoki Y (2016) Analysis of satellite images for disaster detection. In: Geoscience and remote sensing symposium (IGARSS), 2016 IEEE international. IEEE, pp 5189–5192

  13. Arvor D, Durieux L, Andrés S, Laporte MA (2013) Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective. ISPRS J Photogramm Remote Sens 82:125–137

    Google Scholar 

  14. Ashktorab Z, Brown C, Nandi M, Culotta A (2014) Tweedr: mining twitter to inform disaster response. In: ISCRAM

  15. Atefeh F, Khreich W (2015) A survey of techniques for event detection in twitter. Comput Intell 31(1):132–164

    MathSciNet  Google Scholar 

  16. Attari N, Ofli F, Awad M, Lucas J, Chawla S (2016) Nazr-cnn: fine-grained classification of uav imagery for damage assessment. arXiv:1611.06474

  17. Avgerinakis K, Moumtzidou A, Andreadis S, Michail E, Gialampoukidis I, Vrochidis S, Kompatsiaris I (2017) Visual and textual analysis of social media and satellite images for flood detection@ multimedia satellite task mediaeval 2017. In: Working notes proceedings of the MediaEval workshop, p 2

  18. Bai Y, Guo L, Jin L, Huang Q (2009) A novel feature extraction method using pyramid histogram of orientation gradients for smile recognition. In: 2009 16th IEEE international conference on image processing (ICIP). IEEE, pp 3305–3308

  19. Bischke B, Bhardwaj P, Gautam A, Helber P, Borth D, Dengel A (2017) Detection of flooding events in social multimedia and satellite imagery using deep neural networks. In: Working notes proceedings MediaEval workshop, p. 2

  20. Bischke B, Borth D, Schulze C, Dengel A (2016) Contextual enrichment of remote-sensed events with social media streams. In: Proceedings of the 2016 ACM on multimedia conference. ACM, pp 1077–1081

  21. Bischke B, Helber P, Schulze C, Venkat S, Dengel A, Borth D (2017) The multimedia satellite task at mediaeval 2017: emergence response for flooding events. In: Proceedings of the MediaEval 2017 workshop (Sept. 13-15, 2017). Dublin, Ireland

  22. Bischke B, Helber P, Zhao Z, de Bruijn J, Borth D (2018) The multimedia satellite task at mediaeval 2018: emergency response for flooding events. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  23. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on Computational learning theory. ACM, pp 92–100

  24. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:135–146

    Google Scholar 

  25. Breitinger F, Stivaktakis G, Baier H (2013) Frash: a framework to test algorithms of similarity hashing. Digit Investig 10:S50–S58

    Google Scholar 

  26. Brouwer T, Eilander D, Van Loenen A, Booij MJ, Wijnberg KM, Verkade JS, Wagemaker J (2017) Probabilistic flood extent estimates from social media flood observations. Nat Hazards Earth Syst Sci 17(5)

    Google Scholar 

  27. Cai D, He X, Han J (2007) Efficient kernel discriminant analysis via spectral regression. In: Seventh IEEE international conference on data mining, 2007. ICDM 2007. IEEE, pp 427–432

  28. Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press, New York

    Google Scholar 

  29. Castillo C (2016) Big crisis data: social media in disasters and time-critical situations. Cambridge University Press, Cambridge

    Google Scholar 

  30. Chatzichristofis SA, Boutalis YS (2008) Cedd: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: International conference on computer vision systems. Springer, pp 312–322

  31. Chatzichristofis SA, Boutalis YS (2008) Fcth: fuzzy color and texture histogram-a low level feature for accurate image retrieval. In: Ninth international workshop on image analysis for multimedia interactive services, 2008. WIAMIS’08. IEEE, pp 191–196

  32. Chen S, Sista S, Shyu ML, Kashyap RL (1999) Indexing and searching structure for multimedia database systems. In: Storage and retrieval for media databases 2000. International society for optics and photonics, vol 3972, pp 262–271

  33. Chen T, Borth D, Darrell T, Chang SF (2014) Deepsentibank: visual sentiment concept classification with deep convolutional neural networks. arXiv:1410.8586

  34. Cimpoi M, Maji S, Vedaldi A (2015) Deep filter banks for texture recognition and segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3828–3836

  35. Cobo A, Parra D, Navón J (2015) Identifying relevant messages in a twitter-based citizen channel for natural disaster situations. In: Proceedings of the 24th international conference on World Wide Web. ACM, pp 1189–1194

  36. Cresci S, Cimino A, Dell’Orletta F, Tesconi M (2015) Crisis mapping during natural disasters via text analysis of social media messages. In: International conference on web information systems engineering. Springer, pp 250–258

  37. Cresci S, Tesconi M, Cimino A, Dell’Orletta F (2015) A linguistically-driven approach to cross-event damage assessment of natural disasters from social media messages. In: Proceedings of the 24th international conference on World Wide Web. ACM, pp 1195–1200

  38. Cresci S, Tesconi M, Cimino A, Dell’Orletta F (2015) A linguistically-driven approach to cross-event damage assessment of natural disasters from social media messages. In: Proceedings of the 24th international conference companion on World Wide Web. ACM

  39. Crooks A, Croitoru A, Stefanidis A, Radzikowski J (2013) # earthquake: twitter as a distributed sensor system. Trans GIS 17(1):124–147

    Google Scholar 

  40. Dalponte M, Bruzzone L, Gianelle D (2008) Fusion of hyperspectral and lidar remote sensing data for classification of complex forest areas. IEEE Trans Geosci Remote Sens 46(5):1416–1427

    Google Scholar 

  41. Dao MS, Pham QNM, Nguyen D, Tien D (2017) A domain-based late-fusion for disaster image retrieval from social media

  42. Datta RS, Meacham C, Samad B, Neyer C, Sjölander K (2009) Berkeley phog: phylofacts orthology group prediction web server. Nucleic Acids Res 37(suppl_2):W84–W89

    Google Scholar 

  43. De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The mahalanobis distance. Chemom Intell Lab Syst 50(1):1–18

    Google Scholar 

  44. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 248–255

  45. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: Proceedings of internal conference on machine learning, vol 32, pp 647–655

  46. Earle PS, Bowden DC, Guy M (2012) Twitter earthquake detection: earthquake monitoring in a social world. Ann Geophys 54(6)

  47. Eguchi RT, Huyck C, Adams BJ, Mansouri B, Houshmand B, Shinozuka M (2003) Resilient disaster response: using remote sensing technologies for post-earthquake damage detection. Res Progress Accomplish 2001-2003:125–137

    Google Scholar 

  48. Eutamene A, Belhadef H, Kholladi MK (2011) New process ontology-based character recognition. In: Research conference on metadata and semantic research. Springer, pp 137–144

  49. Feng Y, Sester M (2018) Extraction of pluvial flood relevant volunteered geographic information (vgi) by deep learning from user generated texts and photos. ISPRS Int J Geo-Inform 7(2):39

    Google Scholar 

  50. Feng Y, Shebotnov S, Brenner C, Sester M (2018) Ensembled convolutional neural network models for retrieving flood relevant tweets. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  51. Fisher A, Flood N, Danaher T (2016) Comparing landsat water index methods for automated water classification in eastern australia. Remote Sens Environ 175:167–182

    Google Scholar 

  52. Frolking S, Qiu J, Boles S, Xiao X, Liu J, Zhuang Y, Li C, Qin X (2002) Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochem Cycles 16(4)

    Google Scholar 

  53. Fu X, Bin Y, Peng L, Zhou J, Yang Y, Shen HT (2017) Bmc@ mediaeval 2017 multimedia satellite task via regression random forest. In: Working notes proceedings of the MediaEval workshop, p 2

  54. Gamba P, Cavalca D, Jaiswal K, Huyck C, Crowley H (2012) The ged4gem project: development of a global exposure database for the global earthquake model initiative. In: Proceedings of the 15th world conferences on earthquake engineering, Lisbon

  55. Gillespie TW, Chu J, Frankenberg E, Thomas D (2007) Assessment and prediction of natural hazards from satellite imagery. Prog Phys Geogr 31(5):459–470

    Google Scholar 

  56. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  57. Guha-Sapir D, Below R, Hoyois P (2015) Em-dat: international disaster database. Catholic University of Louvain, Brussels

    Google Scholar 

  58. Gupta S, Basavaiah M, Fingerhut J (2011) Enhanced bloom filters. US Patent 8,032,529

  59. Hand DJ (1982) Kernel discriminant analysis. Wiley, One Wiley Dr., SOMERSET, 08873, 1982, 264

  60. Hanif M, Tahir M, Rafi M (2018) Detection of passable roads using ensemble of global and local features. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  61. Hanif M, Tahir MA, Khan M, Rafi M (2017) Flood detection using social media data and spectral regression based kernel discriminant analysis. In: Proceedings of the MediaEval 2017 workshop (Sept. 13-1, 2017). Dublin, Ireland

  62. Harrell FE (2001) Ordinal logistic regression. In: Regression modeling strategies. Springer, pp 331–343

  63. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  64. Herrmann RB, Withers M, Benz H (2008) The April 18, 2008 illinois earthquake: an anss monitoring success. Seismol Res Lett 79(6):830–843

    Google Scholar 

  65. Houston JB, Hawthorne J, Perreault MF, Park EH, Goldstein Hode M, Halliwell MR, Turner McGowen SE, Davis R, Vaid S, McElderry JA et al (2015) Social media and disasters: a functional framework for social media use in disaster planning, response, and research. Disasters 39(1):1–22

    Google Scholar 

  66. Howarth P, Rüger S (2004) Evaluation of texture features for content-based image retrieval. In: International conference on image and video retrieval. Springer, pp 326–334

  67. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997. Proceedings. IEEE, pp 762–768

  68. Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) Aidr: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on World Wide Web. ACM, pp 159–162

  69. Imran M, Elbassuoni SM, Castillo C, Diaz F, Meier P (2013) Extracting information nuggets from disaster-related messages in social media. In: Proc. of ISCRAM, Baden-Baden, Germany

  70. Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and gis. Int J Appl Earth Obs Geoinf 4(1):1–10

    Google Scholar 

  71. Jing M, Scotney B, Coleman S, et al. (2016) Flood event image recognition via social media image and text analysis. In: IARIA conference COGNITIVE

  72. Jou B, Chang SF (2016) Deep cross residual learning for multitask visual recognition. In: Proceedings of the ACM MM. ACM, pp 998–1007

  73. Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Phys Geogr

  74. Kamilaris A, Prenafeta-Boldú FX (2018) Disaster monitoring using unmanned aerial vehicles and deep learning arXiv:1807.11805

  75. Kansas J, Vargas J, Skatter HG, Balicki B, McCullum K (2016) Using landsat imagery to backcast fire and post-fire residuals in the boreal shield of saskatchewan: implications for woodland caribou management. Int J Wildland Fire 25 (5):597–607

    Google Scholar 

  76. Kaplan AM, Haenlein M (2010) Users of the world, unite! the challenges and opportunities of social media. Bus Horiz 53(1):59–68

    Google Scholar 

  77. Kasutani E, Yamada A (2001) The mpeg-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. In: 2001 international conference on image processing, 2001. Proceedings, vol 1. IEEE, pp 674–677

  78. Kerle N, Oppenheimer C (2002) Satellite remote sensing as a tool in lahar disaster management. Disasters 26(2):140–160

    Google Scholar 

  79. Khan A, Lazzerini B, Calabrese G, Serafini L (2018) Soccer event detection. In: 4th international conference on image processing and pattern recognition (IPPR 2018). David C. Wyld others, pp 119–129

  80. Kirchknopf A, Slijepcevic D, Zeppelzauer M, Seidl M (2018) Detection of road passability from social media and satellite images. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  81. Kisilevich S, Mansmann F, Nanni M, Rinzivillo S (2009) Spatio-temporal clustering. In: Data mining and knowledge discovery handbook. Springer, pp 855–874

  82. Klein B, Castanedo F, Elejalde I, López-de Ipina D, Nespral AP (2013) Emergency event detection in twitter streams based on natural language processing. In: International conference on ubiquitous computing and ambient intelligence. Springer, pp 239–246

  83. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  84. Lagerstrom R, Arzhaeva Y, Szul P, Obst O, Power R, Robinson B, Bednarz T (2016) Image classification to support emergency situation awareness. Frontiers in Robotics and AI 3:54

    Google Scholar 

  85. Li Z, Itti L (2011) Saliency and gist features for target detection in satellite images. IEEE Trans Image Process 20(7):2017–2029

    MathSciNet  MATH  Google Scholar 

  86. Liu Y, Wu L (2016) Geological disaster recognition on optical remote sensing images using deep learning. Procedia Comput Sci 91:566–575

    Google Scholar 

  87. Lopez-Fuentes L, Farasin A, Skinnemoen H, Garza P (2018) Deep learning models for passability detection in flooded roads. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  88. Lux M, Riegler M, Halvorsen P, Pogorelov K, Anagnostopoulos N (2016) Lire: open source visual information retrieval. In: Proceedings of the ACM multimedia systems. ACM, p 30

  89. Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715

    Google Scholar 

  90. McMinn AJ, Moshfeghi Y, Jose JM (2013) Building a large-scale corpus for evaluating event detection on twitter. In: Proceedings of the 22nd ACM international conference on information & knowledge management. ACM, pp 409–418

  91. Middleton SE, Middleton L, Modafferi S (2014) Real-time crisis mapping of natural disasters using social media. IEEE Intell Syst 29(2):9–17

    Google Scholar 

  92. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp 3111–3119

  93. Mitra S, Pal SK (1995) Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans Neural Netw 6(1):51–63

    Google Scholar 

  94. Moumtzidou A, Giannakeris P, Andreadis S, Mavropoulos A, Meditskos G, Gialampoukidis I, Avgerinakis K, Kompatsiaris I (2018) A multimodal approach in estimating road passability through a flooded area using social media and satellite images. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  95. Murthy D, Longwell SA (2013) Twitter and disasters: the uses of twitter during the 2010 Pakistan floods. Inf Commun Soc 16(6):837–855

    Google Scholar 

  96. Nguyen DT, Ofli F, Imran M, Mitra P (2017) Damage assessment from social media imagery data during disasters. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017. ACM, pp 569–576

  97. Nogueira K, Fadel SG, Dourado ÍC, Werneck RDO, Muñoz JA, Penatti OA, Calumby RT, Li LT, dos Santos JA, Torres RDS (2017) Data-driven flood detection using neural networks

  98. Nogueira K, Fadel SG, Dourado ÍC, Werneck RDO, Muñoz JA, Penatti OA, Calumby RT, Li LT, dos Santos JA, Torres RDS (2018) Exploiting convnet diversity for flooding identification. IEEE Geosci Remote Sens Lett 15(9):1446–1450

    Google Scholar 

  99. Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Largescale image retrieval with attentive deep local features. In: Proceedings of the IEEE international conference on computer vision, pp 3456–3465

  100. Olteanu A, Castillo C, Diakopoulos N, Aberer K (2015) Comparing events coverage in online news and social media: The case of climate change. In: Proceedings of the ninth international AAAI conference on web and social media, EPFL-CONF-211214

  101. Olteanu A, Castillo C, Diaz F, Vieweg S (2014) Crisislex: a lexicon for collecting and filtering microblogged communications in crises. In: ICWSM

  102. Olteanu A, Vieweg S, Castillo C (2015) What to expect when the unexpected happens: Social media communications across crises. In: Proceedings of the 18th ACM conference on computer supported cooperative work & social computing. ACM, pp 994–1009

  103. Parilla-Ferrer BE, Fernandez P, Ballena J (2014) Automatic classification of disaster-related tweets. In: Proceedings of the international conference on innovative engineering technologies (ICIET), p 62

  104. Paul F, Andreassen LM (2009) A new glacier inventory for the svartisen region, norway, from landsat etm+ data: challenges and change assessment. J Glaciol 55 (192):607–618

    Google Scholar 

  105. Pekar V, Binner J, Najafi H (2016) Detecting mass emergency events on social media: one classification problem or many?. In: Proceedings of the international conference on data mining (DMIN). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), p 31

  106. Pekar V, Binner J, Najafi H, Hale C (2016) Selecting classification features for detection of mass emergency events on social media. In: Proceedings of the International Conference on Security and Management (SAM). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), p 192

  107. Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543

  108. Pinho R (2012) Gem: a participatory framework for open, state-of-the-art models and tools for earthquake risk assessment. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, pp. 24–28

  109. Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114 (12):2875–2887

    Google Scholar 

  110. Said N, Pogorelov K, Ahmad K, Riegler M, Ahmad N, Ostroukhova O, Halvorsen P, Conci N (2018) Deep learning approaches for flood classification and floodaftermath detection. In: Proceedings of the MediaEval 2018 workshop. Sophia-Antipolis, France (Oct. 29-31, 2018)

  111. Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inform Process Manag 24(5):513–523

    Google Scholar 

  112. Shekhar H, Setty S (2015) Disaster analysis through tweets. In: 2015 international conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 1719–1723

  113. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99, vol 3. IEEE, pp 1945–1950

  114. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  115. Son J, Park SJ, Jung KH (2017) Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv:1706.09318

  116. Stanford N (2010) Stanford named entity recognizer

  117. Steedman M, Osborne M, Sarkar A, Clark S, Hwa R, Hockenmaier J, Ruhlen P, Baker S, Crim J (2003) Bootstrapping statistical parsers from small datasets. In: Proceedings of the tenth conference on European chapter of the association for computational linguistics. Association for Computational Linguistics, vol 1, pp 331–338

  118. Stelter B, Cohen N (2008) Citizen journalists provided glimpses of mumbai attacks. The New York Times 30

  119. Sural S, Qian G, Pramanik S (2002) Segmentation and histogram generation using the hsv color space for image retrieval. In: Proceedings of the 2002 international conference on image processing. 2002, vol 2, IEEE, pp II–II

  120. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  121. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567

  122. Takahashi B, Tandoc EC Jr, Carmichael C (2015) Communicating on twitter during a disaster: an analysis of tweets during typhoon haiyan in the philippines. Comput Hum Behav 50:392–398

    Google Scholar 

  123. Team P (2016) Planet application program interface: in space for life on earth. San francisco, CA

  124. Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D, Borth D, Li LJ (2016) Yfcc100m: the new data in multimedia research. Commun ACM 59(2):64–73

    Google Scholar 

  125. Tkachenko N, Zubiaga A, Procter R (2017) Wisc at mediaeval 2017: multimedia satellite task. In: Working notes proceedings MediaEval workshop, p 2

  126. To H, Agrawal S, Kim SH, Shahabi C (2017) On identifying disaster-related tweets: matching-based or learning-based?. In: 2017 IEEE third international conference on multimedia big data (BigMM). IEEE, pp 330–337

  127. Truong B, Caragea C, Squicciarini A, Tapia AH (2014) Identifying valuable information from twitter during natural disasters. Proc Assoc Inf Sci Technol 51(1):1–4

    Google Scholar 

  128. Unisdr U, La Red O (2011) Robot search, apache software foundation: desinventar disaster information system

  129. Vieweg S, Castillo C, Imran M (2014) Integrating social media communications into the rapid assessment of sudden onset disasters. In: International conference on social informatics. Springer, pp 444–461

  130. Voigt S, Kemper T, Riedlinger T, Kiefl R, Scholte K, Mehl H (2007) Satellite image analysis for disaster and crisis-management support. IEEE Trans Geosci Remote Sens 45(6):1520–1528

    Google Scholar 

  131. Wang H, Hovy EH, Dredze M (2015) The hurricane sandy twitter corpus. In: AAAI workshop: WWW and public health intelligence

  132. Won CS, Park DK, Park SJ (2002) Efficient use of mpeg-7 edge histogram descriptor. ETRI J 24(1):23–30

    MathSciNet  Google Scholar 

  133. World Development Indicators (1999) World Bank

  134. Yager RR, Filev DP (1999) Induced ordered weighted averaging operators. IEEE Trans Syst Man Cybern B Cybern 29(2):141–150

    Google Scholar 

  135. Yang Y, Ha HY, Fleites F, Chen SC, Luis S (2011) Hierarchical disaster image classification for situation report enhancement. In: 2011 IEEE international conference on information reuse and integration (IRI). IEEE, pp 181–186

  136. Yin J, Lampert A, Cameron M, Robinson B, Power R (2012) Using social media to enhance emergency situation awareness. IEEE Intell Syst 27(6):52–59

    Google Scholar 

  137. Youssef AM, Pradhan B, Hassan AM (2011) Flash flood risk estimation along the St. Katherine road, Southern Sinai, Egypt using gis based morphometry and satellite imagery. Environ Earth Sci 62(3):611–623

    Google Scholar 

  138. Zhang X, Hu B, Chen J, Moore P (2013) Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web 16(4):497–513

    Google Scholar 

  139. Zhang Y, Jin R, Zhou ZH (2010) Understanding bag-of-words model: a statistical framework. Int J Mach Learn Cybern 1(1-4):43–52

    Google Scholar 

  140. Zhao Z, Larson M (2017) Retrieving social flooding images based on multimodal information

  141. Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A (2014) Learning deep features for scene recognition using places database. In: Advances in neural information processing systems, pp 487–495

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ahmad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, N., Ahmad, K., Riegler, M. et al. Natural disasters detection in social media and satellite imagery: a survey. Multimed Tools Appl 78, 31267–31302 (2019). https://doi.org/10.1007/s11042-019-07942-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07942-1

Keywords

Navigation