Abstract
In order to solve the problem of low accuracy and efficiency for surface defects in common woven fabrics, a novel fabric defect classification method is proposed based on unsupervised segmentation and ELM. The classification method is divided into four steps including defect segmentation, feature extraction, ELM classifier training, and Bayesian probability fusion. Firstly, an unsupervised segmentation is presented for the Grayscale fabric defect image after preprocessing. Secondly, geometric and texture features were extracted by using the segmented image and the undivided Grayscale image. Then, features and labels in fabric defect images are considered as training sets to train the ELM classifier. Finally, the input fabric defect image is classified by the trained ELM classifier and the Bayesian probability fusion method. Experimental results show that the proposed method can classify the fabric defect image with high accuracy and efficiency that can better meet the requirements for practical applications.
Similar content being viewed by others
References
AElik H, DaLger L, Topalbekirolu M (2014) Development of a machine vision system: real-time fabric defect detection and classification with neural networks. J Text Inst Proc Abstr 105(6):575–585
Anitha S, Radha V (2013) Evaluation of defect detection in textile images using gabor wavelet based independent component analysis and vector quantized principal component analysis. Springer , India
Banumathi P, Nasira GM (2012) Fabric inspection system using artificial neural networks. Studiainformatica.ii.uph.edu.pl 47(1):12–23
Bissi L, Baruffa G, Placidi P, Ricci E, Scorzoni A, Valigi P (2013) Automated defect detection in uniform and structured fabrics using gabor filters and pca. J Vis Commun Image Represent 24(7):838–845
Cao J, Zhang J, Wen Z, Wang N, Liu X (2015) Fabric defect inspection using prior knowledge guided least squares regression. Multimed Tools Appl 76(3):1–17
Chan CH, Pang GKH (2002) Fabric defect detection by fourier analysis. IEEE Trans Ind Appl 36(5):1267–1276
Chetverikov D, Hanbury A (2002) Finding defects in texture using regularity and local orientation. Pattern Recogn 35(10):2165–2180
Cho CS, Chung BM, Park MJ (2005) Development of real-time vision-based fabric inspection system. IEEE Trans Ind Electron 52(4):1073–1079
Germany DF (1996) Tilda textile texture-database, Version 1.0. http://lmb.informatik.uni-freiburg.de/resources/datasets/tilda.en.html
Ding S, Liu Z, Li C (2011) Adaboost learning for fabric defect detection based on hog and svm. In: International conference on multimedia technology, pp 2903–2906
El-Tokhy MS, Mahmoud II (2015) Classification of welding flaws in gamma radiography images based on multi-scale wavelet packet feature extraction using support vector machine. J Nondestruct Eval 34(4):1–17
Foody GM, Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42(6):1335–1343
Gao XD, Gao B, Zuo H, Xin WH (2006) Fabric defect detection based on support vector machine. J Text Res 27(5):26–28
Ghosh A, Guha T, Bhar RB, Das S (2011) Pattern classification of fabric defects using support vector machines. Int J Cloth Sci Technol 23(2):142–151
Guan S, Gao Z (2014) Fabric defect image segmentation based on the visual attention mechanism of the wavelet domain. Text Res J 84(10):1018–1033
Han J, Zhang D, Cheng G, Guo L, Ren J (2015) Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans Geosci Remote Sens 53(6):3325–3337
Hanbay K, Talu MF (2016) Fabric defect detection systems and methods-a systematic literature review. Opt-Int J Light Electron Opt 127(24):11960–11973
Hu GH, Zhang GH, Wang QH (2014) Automated defect detection in textured materials using wavelet-domain hidden Markov models. Opt Eng 53(9):93–107
Hu GH, Zhang GH, Wang QH (2015) Unsupervised defect detection in textiles based on fourier analysis and wavelet shrinkage. Appl Opt 54(10):2963–2980
Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892
Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501
Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Cybern B Cybern Publ IEEE Syst Cybern Soc 42(2):513–529
Jia L, Chen C, Liang J, Hou Z (2017) Fabric defect inspection based on lattice segmentation and gabor filtering. Neurocomputing 238:84–102
Jian M, Dong J, Lam KM (2013) Fsam: a fast self-adaptive method for correcting non-uniform illumination for 3d reconstruction. Comput Ind 64(9):1229–1236
Jian M, Lam KM, Dong J (2014) Facial-feature detection and localization based on a hierarchical scheme. Inf Sci 262(3):1–14
Jian M, Lam KM, Dong J (2014) Illumination-insensitive texture discrimination based on illumination compensation and enhancement. Inf Sci 269(11):60–72
Jian M, Lam KM, Dong J, Shen L (2015) Visual-patch-attention-aware saliency detection. IEEE Trans Cybern 45(8):1575–1586
Jian M, Yin Y, Dong J, Lam KM (2018) Content-based image retrieval via a hierarchical-local-feature extraction scheme. Multimedia Tools & Applications:1–19. https://doi.org/10.1007/s11042-018-6122-2
Jian M, Yin Y, Dong J, Zhang W (2018) Comprehensive assessment of non-uniform illumination for 3d heightmap reconstruction in outdoor environments. Comput Ind 99:110–118
Jing J, Yang P, Li P, Kang X (2014) Supervised defect detection on textile fabrics via optimal gabor filter. J Ind Text 44(1):40–57
Junior Jarbas Joaci De Mesquita S, Backes A (2016) Elm based signature for texture classification. Pattern Recogn 51(1):395–401
Kim SC, Kang TJ (2007) Texture classification and segmentation using wavelet packet frame and gaussian mixture model. Pattern Recogn 40(4):1207–1221
Kumar A (2008) Computer-vision-based fabric defect detection: a survey. IEEE Trans Ind Electron 55(1):348–363
Kuo CFJ, Hsu CTM, Chen WH, Chiu CH (2012) Automatic detection system for printed fabric defects. Text Res J 82(6):591–601
Kuo CFJ, Shih CY, Huang CC, Wen YM (2016) Image inspection of knitted fabric defects using wavelet packets. Text Res J 85(5):553–560
Kuo CFJ, Su TL (2003) Gray relational analysis for recognizing fabric defects. Text Res J 73(5):461–465
Li Y, Zhang C (2016) Automated vision system for fabric defect inspection using gabor filters and pcnn. Springerplus 5(1):765
Li P, Liang J, Shen X, Zhao M, Sui L (2017) Textile fabric defect detection based on low-rank representation. Multimed Tools Appl 76(3):1–26
Li W, Cheng L (2014) Yarn-dyed woven defect characterization and classification using combined features and support vector machine. J Text Inst Proc Abstr 105 (2):163–174
Liu W, Hua G, Smith JR (2014) Unsupervised one-class learning for automatic outlier removal. In: IEEE conference on computer vision and pattern recognition, pp 3826–3833
Lu B, Duan X, Wang C (2014) A novel approach for image classification based on extreme learning machine. In: IEEE international conference on information science and technology, pp 381–384
Mak K, Peng P, Lau H (2005) A real-time computer vision system for detecting defects in textile fabrics. In: 2005. ICIT 2005. IEEE international conference on industrial technology, pp 469–474
Mottalib MM, Rokonuzzaman M, Habib MT, Ahmed F (2016) Fabric defect classification with geometric features using bayesian classifier. In: International conference on advances in electrical engineering, pp 137–140
Nasira DGM, Banumathi P (2013) Plain woven fabric defect detection based on image processing and artificial neural networks. Int J Comput Trends Technol 6(4):226–229
Ng MK, Ngan HYT, Yuan X, Zhang W (2014) Patterned fabric inspection and visualization by the method of image decomposition. IEEE Trans Autom Sci Eng 11(3):943–947
Ngan HYT, Pang GKH, Yung NHC (2011) Automated fabric defect detection-a review. Image Vis Comput 29(7):442–458
Rong HJ, Huang GB, Ong YS (2008) Extreme learning machine for multi-categories classification applications. In: IEEE international joint conference on neural networks, pp 1709–1713
Sakhare K, Kulkarni A, Kumbhakarn M, Kare N (2015) Spectral and spatial domain approach for fabric defect detection and classification. In: International conference on industrial instrumentation and control, pp 640–644
Tan X, Chen S, Zhou ZH, Zhang F (2006) Face recognition from a single image per person: a survey. Pattern Recogn 39(9):1725–1745
Yapi D, Allili MS, Baaziz N (2017) Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain. IEEE Trans Autom Sci Eng 11(99):1–13
Yildiz K, Demetgul ABM (2016) A thermal-based defect classification method in textile fabrics with k-nearest neighbor algorithm. J Ind Textiles 45(5):780–795
Zhang Y, Lu Z, Li J (2009) Fabric defect detection and classification using gabor filters and gaussian mixture model. In: Asian conference on computer vision, pp 635–644
Zhang Y, Lu Z, Li J (2010) Fabric defect classification using radial basis function network. Pattern Recogn Lett 31(13):2033–2042
Zhang D, Han J, Cheng G, Liu Z, Bu S, Guo L (2015) Weakly supervised learning for target detection in remote sensing images. IEEE Geosci Remote Sens Lett 12(4):701–705
Zhao LJ, Chai TY, Diao XK, Yuan DC (2012) Multi-class classification with one-against-one using probabilistic extreme learning machine. Springer, Berlin
Zhou J, Semenovich D, Sowmya A, Wang J (2012) Sparse dictionary reconstruction for textile defect detection. In: International conference on machine learning and applications, pp 21–26
Zhou J, Wang J (2013) Fabric defect detection using adaptive dictionaries. Text Res J 83(17):1846–1859
Zhou J, Semenovich D, Sowmya A, Wang J (2014) Dictionary learning framework for fabric defect detection. J Text Inst Proc Abstr 105(3):223–234
Zhao B, Wu HH, Li SJ, Mao WH, Zhang XC (2015) Research on weed recognition method based on invariant moments. In: Intelligent control and automation, pp 2167–2169
Zhou J, Wang J (2016) Unsupervised fabric defect segmentation using local patch approximation. J Text Inst Proc Abstr 107(6):800–809
Zhu B, Liu J, Pan R, Gao W (2015) Seam detection of inhomogeneously textured fabrics based on wavelet transform. Text Res J 85(13):1381–1393
Acknowledgements
The authors would like to thank the Associate Editor and the reviewers for their valuable comments and suggestions on this paper. This research is supported by the National Natural Science Foundation of China (61862036, 61462051, 61462056, 81560296), the Applied Fundamental Research Project of Yunnan Province (2017FB097).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, L., Zhang, J., Fu, X. et al. Unsupervised segmentation and elm for fabric defect image classification. Multimed Tools Appl 78, 12421–12449 (2019). https://doi.org/10.1007/s11042-018-6786-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-6786-7