Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Depth compression via planar segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the research community. While there exist Video Coding Standards such as HEVC and H.264/AVC for compression of RGB/texture component, the coding of depth data is still an area of active research. This paper presents a method for coding depth videos, captured from mobile RGB-D sensors, by planar segmentation. The segmentation algorithm is based on Markov Random Field assumptions on depth data and solved using Graph Cuts. While all prior works based on this approach remain restricted to images only and under noise-free conditions, this paper presents an efficient solution to planar segmentation in noisy depth videos. Also presented is a unique method to encode depth based on its segmented planar representation. Experiments on depth captured from a noisy sensor (Microsoft Kinect) shows superior Rate-Distortion performance over the 3D extension of HEVC codec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. where T denotes matrix transpose.

References

  1. 3D High Efficiency Video Coding (3D-HTM), https://hevc.hhi.fraunhofer.de/3dhevc

  2. Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: ECCV. IEEE, pp 404–417

    Chapter  Google Scholar 

  3. Bhattacharya U, Veerawal S, Govindu VM (2017) Uttaran and Veerawal, Sumit and Govindu, Venu Madhav, Fast Multiview 3D Scan Registration using Planar Structures, International Conference on 3D Vision

  4. Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves, Technical Report VCEG-M33, ITU-T SG16/Q6, Austin

  5. Blake A, Kohli P, Markov CR (2011) Random Fields for Vision and Image Processing. MIT Press, Stanford

    Book  Google Scholar 

  6. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

  7. Chatterjee A (2015) Geometric calibration and Shape Refinement for 3D Reconstruction. PhD Thesis Report

  8. Cheung G, Kim WS, Ortega A, Ishida J, Kubota A (2011) Depth map coding using graph based transform and transform domain sparsification. In: International workshop on multimedia signal processing, pp 1–6. https://doi.org/10.1109/MMSP.2011.6093810

  9. Delong A, Osokin A, Isack H, Boykov Y (2012) Fast approximate energy minimization with label costs. Int J Comput Vis 96(1):1–27

    Article  MathSciNet  Google Scholar 

  10. Duch MM, Morros JR, Ruiz-Hidalgo J (2016) Depth map compression via 3D region-based representation, J Multimed Tools Appl. https://doi.org/10.1007/s11042-016-3727-1

    Article  Google Scholar 

  11. Farid M, Lucenteforte M, Grangetto M (2015) Panorama view with spatiotemporal occlusion compensation for 3D video coding. IEEE Trans Image Process 24(1):205–219. https://doi.org/10.1109/TIP.2014.2374533

    Article  MathSciNet  Google Scholar 

  12. Fehn C, Schuur K, Kauff P, Smolic A (2003) Coding results for EE4 in MPEG 3DAV, ISO/IEC JTC1/SC29/WG11 M, vol 9561

  13. Feng C, Taguchi Y, Kamat VR (2014) Fast plane extraction in organized point clouds using agglomerative hierarchical clustering. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering, 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp 6218–6225. https://doi.org/10.1109/ICRA.2014.6907776

  14. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography (PDF). Comm ACM 24(6):381–395. https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  15. Gallup D, Frahm JM, Mordohai P, Pollefeys M (2008) Variable baseline/resolution stereo. 2008 IEEE Conference on Computer Vision and Pattern Recognition Variable baseline/resolution stereo, Anchorage, pp 1–8. https://doi.org/10.1109/CVPR.2008.4587671

  16. Jäger F (2012) Simplified depth map intra coding with an optional depth lookup table, 2012 International Conference on 3D Imaging (IC3D), Liege, pp 1–4. https://doi.org/10.1109/IC3D.2012.6615142

  17. Jager F (2011) Contour-based segmentation and coding for depth map compression. In: Visual communications and image processing, pp 1–4. https://doi.org/10.1109/VCIP.2011.6115989

  18. Janoch A, Karayev S, Jia Y, Barron JT, Fritz M, Saenko K, Darrell T (2011) A category-level 3-D object dataset: Putting the Kinect to work, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp 1168–1174

  19. Hemanth Kumar S, Ramakrishnan KR (2014) Improved motion vector compression using 3d-warping. In: Data Compression Conference (DCC). IEEE, pp 424–424

  20. Hemanth Kumar S, Suraj K, Ramakrishnan KR (2014) An efficient depth estimation using temporal 3D-Warping. 2014 International Conference on 3D Imaging (IC3D), Liege, pp 1–8. https://doi.org/10.1109/IC3D.2014.7032586

  21. Hemmat H, Bondarev Y, With P (2015) Real-time planar segmentation of depth images : from three-dimensional edges to segmented planes. J Electron Imaging 24(5):1–11

    Google Scholar 

  22. Howard P, Kossentini F, Martins B, Forchhammer S, Rucklidge W (2002) The emerging JBIG2 standard. IEEE Trans Circ Syst Video Technolo 8(7):838–848

    Article  Google Scholar 

  23. ITU-T and ISO/IEC Advanced video coding for generic audiovisual services ITU-T rec h.264 and ISO/IEC 14496-10 (AVC) (2010)

  24. Isack H, Boykov Y (2012) Energy-based Geometric Multi-Model Fitting. Int J Comput Vis 97(2):123–147

    Article  Google Scholar 

  25. Kim WS, Ortega A, Lai P, Tian D (2015) Depth map coding optimization using rendered view distortion for 3D video coding. IEEE Trans Image Process 24 (11):3534–3545. https://doi.org/10.1109/TIP.2015.2447737

    Article  MathSciNet  Google Scholar 

  26. Lei J, Li S, Zhu C, Sun M, Hou C (2015) Depth coding based on depth-texture motion and structure similarities. IEEE Trans Circ Syst Video Technol 25(2):275–286. https://doi.org/10.1109/TCSVT.2014.2335471

    Article  Google Scholar 

  27. Lossless photo compression benchmark (2013) http://www.imagecompression.info/gralic/ 2013

  28. Lossless image compression (2014) http://www.squeezechart.com/bitmap.html

  29. Mahoney M (2005) Adaptive weighing of context models for lossless data compression. Florida Technical report, Melbourne,

    Google Scholar 

  30. Merkle P, Morvan Y, Smolic A, Farin D, Muller K, de With P, Wiegand T (2008) The effect of depth compression on multiview rendering quality. In: 3DTV-conference: the true vision - capture, transmission and display of 3D video

  31. Merkle P, Muller K, Marpe D, Wiegand T (2015) Depth intra coding for 3D video based on geometric primitives. IEEE Trans Circuits Syst Video Technol

  32. Milani S, Zanuttigh P, Zamarin M, Forchhammer S (2011) Efficient depth map compression exploiting segmented color data. In: IEEE international conference on multimedia and expo, pp 1–6. https://doi.org/10.1109/ICME.2011.6011969

  33. Ozaktas HM, Onural L (2008) Three-Dimensional Television, Signals and Communication Technology. Springer, Berlin

    Book  Google Scholar 

  34. Ozkalayci B, Alatan A (2014) 3D planar representation of stereo depth images for 3DTV applications. IEEE Trans Image Process 23(12):5222–5232. https://doi.org/10.1109/TIP.2014.2360452

    Article  MathSciNet  Google Scholar 

  35. Ozkalayci B (2014) Planar 3D Scene Representations for Depth Compression. Middle East Technical University (thesis report), Çankaya/Ankara

    Google Scholar 

  36. Shahriyar S, Murshed M, Ali M, Paul M (2014) Efficient coding of depth map by exploiting temporal correlation. In: International conference on digital image computing: techniques and applications, pp 1–8. https://doi.org/10.1109/DICTA.2014.7008105

  37. Shen G, Kim WS, Narang SK, Ortega A, Lee J, Wey H Edge-adaptive transforms for efficient depth map coding, 28th Picture Coding Symposium, Nagoya, 2010, pp 566–569. https://doi.org/10.1109/PCS.2010.5702565

  38. Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high effciency video coding (hevc) standard. IEEE Transactions on Circuits and Systems for Video Technology

  39. Smisek J, Jancosek M, Pajdla T (2011) 3D With kinect. 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, pp 1154–1160. https://doi.org/10.1109/ICCVW.2011.6130380

  40. Skodras A, Christopoulos C, Ebrahimi T (2001) The JPEG 2000 still image compression standard. IEEE Signal Proc Mag 18:36–58

    Article  Google Scholar 

  41. Sturm J, Engelhard N, Endres F, Burgard W, Dremers D (2012) A Benchmark for the Evaluation of RGB-D SLAM Systems. Proceedings of the International Conference on Intelligent Robot Systems (IROS)

  42. Tech G, Schwarz H, Muller K, Wiegand T (2012) 3D video coding using the synthesized view distortion change. In: Picture coding symposium, pp 25–28. https://doi.org/10.1109/PCS.2012.6213277

  43. Tech G, Chen Y, Müller K, Ohm JR, Vetro A, Wang YK (2016) Overview of the Multiview and 3D Extensions of High Efficiency Video Coding. IEEE Trans Circ Syst Video Technol 26(1):35–49. https://doi.org/10.1109/TCSVT.2015.2477935

    Article  Google Scholar 

  44. The PAQ data compression programs (2013) http://cs.fit.edu/mmahoney/compression/paq.html

  45. Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on pattern analysis and machine intelligence, pp 13

  46. Yan C et al (2014) A Highly Parallel Framework for HEVC Coding Unit Partitioning Tree Decision on Many-core Processors. IEEE Signal Process Lett 21(5):573–576

    Article  MathSciNet  Google Scholar 

  47. Yan C et al (2014) Efficient Parallel Framework for HEVC Motion Estimation on Many-Core Processors. IEEE Trans Circ Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  48. Zou F, Tian D, Vetro A, Sun H, Au OC, Shimizu S (2014) View synthesis prediction in the 3D video coding extensions of AVC and HEVC. IEEE Trans Circ Syst Video Technol 24(10):1696–1708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hemanth Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.H., K. R. Ramakrishnan Depth compression via planar segmentation. Multimed Tools Appl 78, 6529–6558 (2019). https://doi.org/10.1007/s11042-018-6327-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6327-4

Keywords

Navigation