Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Non-rigid point set registration via global and local constraints

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Non-rigid point set registration is often encountered in meical image processing, pattern recognition, and computer vision. This paper presents a new method for non-rigid point set registration that can be used to recover the underlying coherent spatial mapping (CSM). Firstly, putative correspondences between two point sets are established by using feature descriptors. Secondly, each point is expressed as a weighted sum of several nearest neighbors and the same relation holds after the transformation. Then, this local geometrical constraint is combined with the global model, and the transformation problem is solved by minimizing an error function. These two steps of recovering point correspondences and transformation are performed iteratively to obtained a promising result. Extensive experiments on various synthetic and real data demonstrate that the proposed approach is robust and outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(24):509–522

    Article  Google Scholar 

  2. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  3. Bishop CM (2006) Pattern rcognition and machine learning. Springer

  4. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376

    Article  Google Scholar 

  5. Carpaneto PG (1980) Algorithm 548: solution of the assignment problem. ACM Trans Math Softw 6(1):104–111

    Article  Google Scholar 

  6. Chen J, Ma J, Yang C, Wei J, Ma L (2015) Non-rigid point set registration via coherent spatial mapping. Signal Process 106:62–72

    Article  Google Scholar 

  7. Chen L, Huang X, Tian J (2015) Retinal image registration using topological vascular tree segmentation and bifurcation structures. Biomed Signal Process Control 16:22–31

    Article  Google Scholar 

  8. Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis Image Underst 89:114–141

    Article  Google Scholar 

  9. Dempster A, Laird N, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Series B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  10. Du S, Bi B, Xu G, Zhu J, Zhang X (2017) Robust non-rigid point set registration via building tree dynamically. Multimed Tools Appl 76(9):12065–12081

    Article  Google Scholar 

  11. Fitzgibbon AW (2003) Robust registration of 2D and 3D point sets. Image Vis Comput 21:1145–1153

    Article  Google Scholar 

  12. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906

    Article  Google Scholar 

  13. Giorgio Carpaneto PT (1980) Algorithm 548: solution of the assignment problem. ACM Trans Math Softw 6(1):104–111

    Article  Google Scholar 

  14. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Jian B, Vemuri BC (2011) Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 33(8):1633–1645

    Article  Google Scholar 

  16. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  17. Lian W, Zhang L (2012) Robust point matching revisited: a concave optimization approach. In: Proceedings of European conference on computer vision

  18. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):840–853

    Article  Google Scholar 

  19. Ma J, Zhao J, Tian J, Bai X, Tu Z (2013) Regularized vector field learning with sparse approximation for mismatch removal. Pattern Recogn 46(12):3519–3532

    Article  Google Scholar 

  20. Ma J, Zhao J, Tian J, Tu Z, Yuille AL (2013) Robust estimation of nonrigid transformation for point set registration. In: IEEE Conference on computer vision and pattern recognition. IEEE, pp 2147–2154

  21. Ma J, Zhao J, Tian J, Yuille AL, Tu Z (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721

    Article  MathSciNet  Google Scholar 

  22. Ma J, Chen J, Ming D, Tian J (2014) A mixture model for robust point matching under multi-layer motion. PloS one 9(3):e92282

    Article  Google Scholar 

  23. Ma J, Zhou H, Zhao J, Gao Y, Jiang J, Tian J (2015) Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans Geosci Remote Sens 53(12):6469–6481

    Article  Google Scholar 

  24. Ma J, Qiu W, Zhao J, Ma Y, Yuille AL, Tu Z (2015) Robust L2E estimation of transformation for non-rigid registration. IEEE Trans Signal Process 63(5):1115–1129

    Article  MathSciNet  Google Scholar 

  25. Ma J, Zhao J, Yuille AL (2016) Non-rigid point set registration by preserving global and local structures. IEEE Trans Image Process 25(1):53–64

    Article  MathSciNet  Google Scholar 

  26. Ma J, Zhao J, Jiang J, Zhou H (2017) Non-rigid point set registration with robust transformation estimation under manifold regularization. In: Inproceedings of the Thirty-First AAAI conference on artificial intelligence (AAAI). AAAI, pp 4218–4224

  27. Ma J, Jiang J, Liu C, Li Y (2017) Feature guided Gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration. Inf Sci 417:128–142

    Article  MathSciNet  Google Scholar 

  28. Ma J, Jiang J, Zhou H, Zhao J, Guo X (2018) Guided locality preserving feature matching for remote sensing image registration. IEEE Trans Geosci Remote Sensing. https://doi.org/10.1109/TGRS.2018.2820040

    Article  Google Scholar 

  29. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  Google Scholar 

  30. Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

    Book  Google Scholar 

  31. Yan C, Zhang Y, Xu J, Li L, QionghaiDai F, Zhang Y, QionghaiDai A (2014) Highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  32. Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229

    Article  Google Scholar 

  33. Yan C, Xie H, Yang D, Yin J, Zhang Y (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  34. Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Trans Circ Syst Vid Technol 24(12):2077–2089

    Article  Google Scholar 

  35. Zheng Y, Doermann D (2006) Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans Pattern Anal Mach Intell 28(4):643–649

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant 61501120 and 41501505 and in part by 2016 Outstanding Youth Research Talent Cultivation Program in Colleges and Universities in Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riqing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, M., Zhang, Z. et al. Non-rigid point set registration via global and local constraints. Multimed Tools Appl 77, 31607–31625 (2018). https://doi.org/10.1007/s11042-018-6206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6206-z

Keywords

Navigation