Abstract
Hyperspectral image (HSI) classification is a very active research topic in remote sensing and has numerous potential applications. This paper presents a simple but effective classification method based on spectral-spatial information and K-nearest neighbor (KNN). To be specific, we propose a spectral-spatial KNN (SSKNN) method to deal with the HSI classification problem, which effectively exploits the distances all neighboring pixels of a given test pixel and training samples. In the proposed SSKNN framework, a set-to-point distance is exploited based on least squares and a weighted KNN method is used to achieve stable performance. By using two standard HSI benchmark, we evaluate the proposed method by comparing it with eight competing methods. Both qualitative and quantitative results demonstrate our SSKNN method achieves better performance than other ones.
Similar content being viewed by others
Notes
AVIRIS: Airborne Visible/Infrared Imaging Spectrometer.
These two public data sets can be downloaded from: www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
References
Banerjee A, Burlina P, Diehl C (2006) A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(8):2282–2291
Bannari A, Pacheco A, Staenz K, McNairn H, Omari K (2006) Estimating and mapping crop residues cover on agricultural lands using hyperspectral and ikonos data. Remote Sens Environ 104(4):447–459
Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491
Benediktsson JA, Pesaresi M, Amason K (2003) Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans Geosci Remote Sens 41(9):1940–1949
Bo C, Lu H, Wang D (2016) Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci Remote Sens Lett 13(2):177–181
Bruzzone L, Chi M, Marconcini M (2006) A novel transductive svm for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373
Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97
Cevikalp H, Triggs B (2010) Face recognition based on image sets. In: CVPR, pp 2567–2573
Datt B, McVicar TR, Van Niel TG, Jupp DLB, Pearlman JS (2003) Preprocessing eo-1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans Geosci Remote Sens 41(6):1246–1259
Du Q, Li W (2015) Kernel weighted joint collaborative representation for hyperspectral image classification. In: Proceedings of SPIE, vol 9501, pp 95010V1–95010V6
Dudani SA (1976) The distance-weighted k-nearest-neighbor rule. IEEE Trans Syst Man Cybern 6(4):325–327
Gao L, Li J, Khodadadzadeh M, Plaza A, Zhang B, He Z, Yan H (2014) Subspace-based support vector machines for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(2):349–353
Gualtieri JA, Chettri SR, Cromp RF, Johnson LF (1999) Support vector machine classifiers as applied to aviris data. In: Airborne Earth Science Workshop
Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27(6):957–968
Larsolle A, Muhammed HH (2007) Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precis Agric 8:37–47
Lawrence RL, Wood SD, Sheley RL (2006) Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (randomforest). Remote Sens Environ 100(3):356–362
Li J, Marpu PR, Plaza A, Bioucas-Dias JM, Benediktsson JA (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens 51(9):4816–4829
Li J, Zhang H, Huang Y, Zhang L (2014) Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans Geosci Remote Sens 52(6):3707–3719
Li J, Zhang H, Zhang L (2014) Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification. ISPRS J Photogramm Remote Sens 94(8):25–36
Li J, Zhang H, Zhang L, Huang X, Zhang L (2014) Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 52(9):5923–5936
Li S, Qi H (2011) Sparse representation based band selection for hyperspectral images. In: ICIP, pp 2693–2696
Li W, Du Q (2014) Joint within-class collaborative representation for hyperspectral image classification. IEEE J Sel Top Sign Proces 7(6):2200–2208
Li W, Du Q, Xiong M (2015) Kernel collaborative representation with tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12 (1):48–52
Li W, Du Q, Zhang F, Hu W (2015) Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(2):389–393
Li Y, Lu H, Li J, Li X, Li Y, Serikawa S (2016) Underwater image de-scattering and classification by deep neural network. Comput Electr Eng 54:68–77
Li Y, Lu H, Li J, Li X, Li Y, Serikawa S (2016) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience
Liu J, Wu Z, Sun L, Wei Z, Xiao L (2014) Hyperspectral image classification using kernel sparse representation and semilocal spatial graph regularization. IEEE Geosci Remote Sens Lett 11(8):1320–1324
Manolakis D, Shaw G (2002) Detection algorithms for hyperspectral imaging applications. IEEE Signal Proc Mag 19(1):29–43
Marpu PR, Pedergnana M, Mura MD, Benediktsson JA, Bruzzone L (2013) Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data. IEEE Geosci Remote Sens Lett 10(2):293–297
Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790
Melgani F, Serpico SB (2002) A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recogn Lett 23(9):1053–1061
Moser G, Serpico SB (2013) Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Trans Geosci Remote Sens 51(5):2734–2752
Mura MD, Benediktsson JA, Waske B, Bruzzone L (2010) Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens 31(22):5975–5991
Mura MD, Benediktsson JA, Waske B, Bruzzone L (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762
Mura MD, Villa A, Benediktsson JA, Chanussot J, Bruzzone L (2011) Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci Remote Sens Lett 8(3):542–546
Palmason JA, Benediktsson JA, Sveinsson JR, Chanussot J (2005) Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis In: IGARSS, pp 176–179
Palmason JA, Benediktsson JA, Sveinsson JR, Chanussot J (2005) Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis. In: IGARSS, pp 176–179
Patel N, Patnaik C, Dutta S, Shekh A, Dave A (2001) Study of crop growth parameters using airborne imaging spectrometer data. Int J Remote Sens 22 (12):2401–2411
Pesaresi M, Benediktsson JA (2001) A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 39 (2):309–320
Plaza A, et al. (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122
Qian Y, Ye M, Zhou J (2013) Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51(4):2276–2291
Soltani-Farani A-A, Rabiee HR, Hosseini SA (2015) Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53 (1):527–541
Srinivas U, Yi C, Monga V, Nasrabadi NM, Tran TD (2013) Exploiting sparsity in hyperspectral image classification via graphical models. IEEE Geosci Remote Sens Lett 10(3):505–509
Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Proc Mag 19 (1):58–69
Sun X, Qu Q, Nasrabadi NM, Tran TD (2014) Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 11(7):1235–1239
Tarabalka Y, Fauvel M, Chanussot J, Benediktsson JA (2010) Svm-and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7(4):736–740
Vincent P, Bengio Y (2001) K-local hyperplane and convex distance nearest neighbor algorithms. In: NIPS, pp 985–992
Wang Z, Nasrabadi NM, Huang TS (2013) Discriminative and compact dictionary design for hyperspectral image classification using learning vq framework. In: ICASSP, pp 3427–3431
Wright J, Yang AY, Ganesh A, Sastry SS, Yi M (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31 (2):210–227
Xiong M, Ran Q, Li W, Zou J, Du Q (2015) Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci Remote Sens Lett 12(6):1209–1213
Yang S, Jin H, Wang M, Ren Yu, Jiao L (2014) Data-driven compressive sampling and learning sparse coding for hyperspectral image classification. IEEE Geosci Remote Sens Lett 11(2):479–483
Yang S, Lu H, Li Y, Serikawa S (2013) Proposal of a multi-frame images fusion model on dual tree complex wavelet transform domain. In: ICMLC, pp 952–956
Yi C, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49 (10):3973–3985
Yi C, Nasrabadi NM, Tran TD (2011) Sparse representation for target detection in hyperspectral imagery. IEEE J Se Top Sign Proces 5(3):629–640
Yi C, Nasrabadi NM, Tran TD (2013) Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens 51(1):217–231
Zhang E, Zhang X, Liu H, Jiao L (2015) Fast multifeature joint sparse representation for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(7):1397–1401
Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: ICCV, pp 471–478
Zomer R, Trabucco A, Ustin S (2009) Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. J Environ Manag 90(7):2170–2177
Zou J, Li W, Du Q (2015) Sparse representation-based nearest neighbor classifiers for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(12):2418–2422
Acknowledgments
This work was supported in part by the Natural Science Foundation of China under Grant No. 61502070, and in part by Fundamental Research Funds for Central Universities under Grant No. DUT16RC(4)16.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bo, C., Lu, H. & Wang, D. Spectral-spatial K-Nearest Neighbor approach for hyperspectral image classification. Multimed Tools Appl 77, 10419–10436 (2018). https://doi.org/10.1007/s11042-017-4403-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4403-9