Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Shape exploration of 3D heterogeneous models based on cages

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Shape exploration of 3D heterogeneous models is essential for special effects in 3D animation and games. As heterogeneous models have different numbers of vertices and different topological structures,the mapping between source and target model may be ambiguous for deformation transfer. We propose a new framework for heterogeneous model shape exploration based on cages, which provides a feasible and fast solution to this open problem. Using a public cage as an intermediate medium, the deformation of the source models can be denoted as the position changing of the cage. When applying the cage change to the target model, rough deformation transfer can be achieved. After an optimization and interpolation to generate the explored shape of the heterogeneous target model, animation can be acquired. Our method is not only suitable for triangle meshes, but also for quadrilateral meshes or any other type of meshes. We demonstrate the validity of our scheme by a series of shape exploration experiments with different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baran I, Vlasic D, Grinspun E, Popović J (2009) Semantic deformation transfer. ACM Trans Graph 28(3):36:1–36:6

    Article  Google Scholar 

  2. Beier T, Neely S (1992) Feature-based image metamorphosis. In: SIGGRAPH ’92: Proceedings Of the 19th annual conference on computer graphics and interactive techniques. ACM, NY, USA, pp 35–42

  3. Ben-Chen M, Weber O, Gotsman C (2009) Spatial deformation transfer. In: Proceedings of the 2009 ACM SIGGRAPH/eurographics symposium on computer animation. ACM, pp 67–74

  4. Ben-Chen M, Weber O, Gotsman C (2009) Variational harmonic maps for space deformation. ACM Trans Graph 28(3):1–11

    Article  Google Scholar 

  5. Bookstein FL (1989) Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585

    Article  MATH  Google Scholar 

  6. Carmo MPD (1976) Differential Geometry of Curves and Surfaces, Chapter 1, pp. 16–23 Prentice-Hall

  7. Chen L, Huang J, Sun H, Bao H (2010) Cage-based deformation transfer. Comput Graph 34(2):107–118

    Article  Google Scholar 

  8. Cohen-Or D, Sorkine O (2006) Encoding meshes in differential coordinates. In: (SCCG06)Proceedings of the 22nd spring conference on computer graphics. ACM Press

  9. Derose T, Meyer M (2006) Harmonic coordinates. Technical Report. Pixar Animation Studios

  10. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27

    Article  MathSciNet  MATH  Google Scholar 

  11. Floater MS, Kós G, Reimers M (2005) Mean value coordinates in 3d. Comput Aided Geom Des 22(7):623–631

    Article  MathSciNet  MATH  Google Scholar 

  12. Fröhlich S, Botsch M (2011) Example-driven deformations based on discrete shells. In: Computer graphics forum, vol 30. Wiley Online Library, pp 2246–2257

  13. García FG, Paradinas T, Coll N, Patow G (2013) *Cages:: A multilevel, multi-cage-based system for mesh deformation. ACM, NY, USA, pp 24:1–24:13

    MATH  Google Scholar 

  14. Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. Computer Graphics 31(Annual Conference Series):209–216

    Google Scholar 

  15. Hoppe H (1996) Progressive meshes. In: SIGGRAPH ’96: Proceedings Of the 23rd annual conference on computer graphics and interactive techniques. ACM, NY, USA, pp 99–108

  16. Hormann K, Floater MS (2006) Mean value coordinates for arbitrary planar polygons. ACM Trans Graph 25(4):1424–1441

    Article  Google Scholar 

  17. Jacobson A, Baran I, Popovic J, Sorkine O (2011) Bounded biharmonic weights for real-time deformation. In: SIGGRAPH ’11: ACM SIGGRAPH 2011 Papers

  18. Joshi P, Meyer M, DeRose T, Green B, Sanocki T (2007) Harmonic coordinates for character articulation. ACM, NY, USA, p 71

  19. Ju T, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. ACM Trans Graph 24(3):561–566

    Article  Google Scholar 

  20. Ju T, Zhou QY, Van De Panne M, Cohen-Or D, Neumann U (2008) Reusable skinning templates using cage-based deformations. ACM Trans Graph 27(5):1

    Article  Google Scholar 

  21. Karni Z, Gotsman C (2000) Spectral compression of mesh geometry. In: SIGGRAPH ’00: Proceedings Of the 27th annual conference on computer graphics and interactive techniques. ACM Press, NY, USA, pp 279–286

  22. Kilian M, Mitra NJ, Pottmann H (2007) Geometric modeling in shape space. ACM Trans Graph 26(3):64

    Article  Google Scholar 

  23. Li XY, Ju T, Hu SM (2013) Cubic mean value coordinates. ACM Trans Graph 98(4):1–10

    MATH  Google Scholar 

  24. Lipman Y, Kopf J, Cohen-Or D, Levin D (2007) Gpu-assisted positive mean value coordinates for mesh deformations. In: SGP ’07: Proceedings Of the fifth eurographics symposium on geometry processing. Eurographics Association, Switzerland, pp 117–123

  25. Lipman Y, Levin D, Cohen-Or D (2008) Green coordinates. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 Papers. ACM, NY, USA, pp 1–10

  26. Luebke D, Harris M, Krüger J, Purcell T, Govindaraju N, Buck I, Woolley C, Lefohn A (2004) Gpgpu: general purpose computation on graphics hardware. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Course notes. ACM, NY, USA, p 33

  27. Ma C, Huang H, Sheffer A, Kalogerakis E, Wang R (2014) Analogy-driven 3D style transfer. Comput Graph Forum 33(2):175–184

    Article  Google Scholar 

  28. MacCracken R, Joy KI (1996) Free-form deformations with lattices of arbitrary topology. In: SIGGRAPH ’96: Proceedings Of the 23rd annual conference on computer graphics and interactive techniques. ACM, NY, USA, pp 181–188

  29. Ovsjanikov M, Ben-Chen M, Solomon J, Butscher A, Guibas L (2012) Functional maps: a flexible representation of maps between shapes. ACM Trans Graph (TOG) 31(4):30

    Article  Google Scholar 

  30. Shlens J (2005) A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San Diego

  31. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel HP (2004) Laplacian surface editing. In: SGP ’04: Proceedings Of the 2004 eurographics/ACM SIGGRAPH symposium on geometry processing. ACM, NY, USA, pp 175–184

  32. Sorkine O, Cohen-Or D, Toledo S (2003) High-pass quantization for mesh encoding. In: SGP ’03: Proceedings Of the 2003 eurographics/ACM SIGGRAPH symposium on geometry processing. Eurographics Association, Switzerland, pp 42–51

  33. Sumner RW, Popović J (2004) Deformation transfer for triangle meshes. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. ACM, NY, USA, pp 399–405

  34. Thiery JM, Tierny J, Boubekeur T (2012) Cager: Cage-based reverse engineering of animated 3d shapes. Comput Graph Forum 31(8):2303–2316

    Article  Google Scholar 

  35. Turk G, O’Brien JF (2005) Shape transformation using variational implicit functions. In: ACM SIGGRAPH 2005 Courses. ACM, p 13

  36. Wang Y, Jacobson A, Barbič J, Kavan L (2015) Linear subspace design for real-time shape deformation. ACM Trans Graph 34(4):57:1–57:11

    Article  Google Scholar 

  37. Weber O, Ben-Chen M, Gotsman C (2009) Complex barycentric coordinates with applications to planar shape deformation. Comput Graph Forum (Proc Eurograph) 28(2)

  38. Weber O, Sorkine O, Lipman Y, Gotsman C (2007) Context-aware skeletal shape deformation. Comput Graph Forum (Proc Eurograph) 26(3)

  39. Winkler T, Drieseberg J, Alexa M, Hormann K (2010) Multi-scale geometry interpolation. In: Computer graphics forum, vol 29. Wiley Online Library, pp 309–318

  40. Yoshiyasu Y, Yamazaki N (2012) Detail-aware spatial deformation transfer. Comput Animat Virtual Worlds 23(3-4):225–233

    Article  Google Scholar 

  41. Zhang J, Deng B, Liu Z, Patanè G, Bouaziz S, Hormann K, Liu L (2014) Local barycentric coordinates. ACM Trans Graph 33(6):188:1–188:12

    Google Scholar 

  42. Zhao Y, Pan B, Xiao C, Peng Q (2012) Dual-domain deformation transfer for triangular meshes. Comput Animat Virtual Worlds 23(3-4):447–456

    Article  Google Scholar 

  43. Zhou K, Xu W, Tong Y, Desbrun M (2010) Deformation transfer to multi-component objects. In: Comput graph forum, vol 29, pp 319–325

Download references

Acknowledgments

This work is supported in part by the National High-Tech Research and Development Program of China (863 Program) with No.2015AA016402, and in part by National Natural Science Foundation of China with Nos. 61571439, 61561003, 61471261,61372190, and 61202324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, W., Guo, J., Bonaventura, X. et al. Shape exploration of 3D heterogeneous models based on cages. Multimed Tools Appl 76, 12369–12390 (2017). https://doi.org/10.1007/s11042-016-3642-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3642-5

Keywords

Navigation